共查询到20条相似文献,搜索用时 0 毫秒
1.
利用农作物秸秆进行厌氧发酵生产沼气是解决我国农村能源紧张的重要途径,然而秸秆中难以降解的木质纤维结构导致在发酵过程中甲烷转化率较低。利用自行设计的可控性恒温发酵装置,以玉米秸秆为发酵原料,分析了在不同温度条件下氢氧化钠(NaOH)预处理对秸秆木质纤维结构以及厌氧发酵产气效率的影响。结果表明,NaOH预处理能够显著降低玉米秸秆的木质纤维素含量,与未预处理的秸秆相比,经NaOH处理后的秸秆纤维素含量降低了24.4%~33.2%,半纤维素含量降低了14.2%~52.4%,木质素含量降低了9.3%~29.3%。在6%、8%和10%浓度中,经8%NaOH处理的秸秆在55℃下的甲烷产量最高,达到188.7 ml CH4·(g VS)-1,较未处理的增加了84.2%,因此可作为提高秸秆厌氧发酵产气效率的预处理方法。 相似文献
2.
3.
4.
5.
6.
7.
对玉米秸秆进行氢氧化钠/蒽醌(NaOH/AQ)去木质化预处理,考察了预处理温度、时间和NaOH用量对玉米秸秆脱木质素程度的影响,并探讨了脱木质素程度对提高预处理后物料酶解性能的影响。L9(34)正交试验得出较适宜预处理工艺条件为:温度160℃,时间60 min,NaOH用量(以绝干原料质量计)2.8%;其他条件为AQ用量0.05%,固液比1:5(g:mL),此时木质素脱除率为75%,酶解后聚糖转化率达到73.79%。随着物料脱木质素程度的提高,其酶解效率相应增加;当木质素脱除率达到一定程度后,预处理后的聚糖转化率达到最大值,继续提高木质素脱除率,聚糖转化率反而降低。响应面优化的酶水解工艺条件为纤维素酶用量30 FPU/g,β-葡萄糖苷酶10 IU/g,反应时间72 h,温度50℃,底物质量分数2.5%,此时还原糖得率为85.62%。对酶解液进行HPLC分析,酶解液中的葡萄糖质量浓度为14.83 g/L,木糖质量浓度为4.83 g/L。XRD分析显示,预处理前后纤维素的晶型没有变化,而结晶度由31.40%提高至46.91%,表明物料中木质素和半纤维素发生了不同程度的溶出。 相似文献
8.
9.
分别用化学方法(稀硫酸、氢氧化钠、聚乙二醇-4000、曲拉通X-100)和物理方法(液氮超低温处理)对玉米秸秆进行预处理,比较了预处理后木质纤维素酶降解的效果。结果表明:氢氧化钠和液氮超低温处理的降解效率比较好,生成的糖最多。扫描电镜检测证明预处理后的秸秆物理结构发生了较大改变。对预处理后的秸秆进行发酵产沼气能力比较的结果表明,液氮处理后的秸秆产沼气的量最多。 相似文献
10.
秸秆预处理方法的筛选 总被引:2,自引:0,他引:2
农作物秸秆组分结构特殊,秸秆中的木质纤维素很难被酸和酶降解。解决了木质素的降解问题,就能提高秸秆的降解性能。研究开发适宜的预处理技术是一种重要的降解木质素方法。通过预处理技术,使木质纤维素首先降解成简单成分,从而有利于随后的厌氧消化过程。通过试验,分析了不同的预处理方法对秸秆组分降解率的影响和污泥预处理方法的筛选,最终得出:最佳预处理方法为稀硫酸预处理法,处理条件如下:硫酸浓度:0.7%;处理温度:121℃;预处理时间:1h。 相似文献
11.
为了解氧气(O2)在玉米秸秆湿热预处理中的作用,优化玉米秸秆酒精生产工艺,本文采用三种不同湿热预处理条件处理玉米秸秆,即条件1(195℃,15min)、条件2(195℃,15min,12bar O2)和条件3(195℃,15min,12bar O2,2g/L Na2CO3),并利用酿酒酵母对预处理后的玉米秸秆同步糖化发酵酒精工艺(SSF)进行了研究。实验结果表明:经过预处理,玉米秸秆分为固体滤饼与水解液两部分,其中绝大部分纤维素以固体形式保留在滤饼中,而半纤维素和木质素由于不稳定则发生了部分水解或降解。三种预处理条件下纤维素总体收率分别为91.2%、94.6%和95.9%,半纤维素总体收率分别为74.5%、50.3%和68.2%,固体滤饼中木质素质量分数分别为25.2%、17.5%和13.7%,纤维素酶解葡萄糖率分别为64.8%、65.8%和67.6%。表明氧气对纤维素收率影响不大,能够促进半纤维素的溶出。氧气主要与木质素发生反应,尤其与碱性物质碳酸钠(Na2CO3)结合,能够促进木质素降解,从而获得了较高的纤维素收率和纤维素酶解葡萄糖率。因此在底物质量分数8%,经过酿酒酵母142h发酵,经条件3处理的玉米秸秆获得的酒精浓度最高,最终酒精浓度达到25.0g/L,并且整个发酵过程没有明显的抑制作用产生。 相似文献
12.
以玉米秸秆为原料,先经复合菌系进行好氧生物预处理,然后接种厌氧污泥进行厌氧发酵,考察了预处理时间对厌氧发酵的影响,并测定木质纤维素结构及含量变化、关键性酶活、微生物多样性和厌氧发酵酸化产量。研究结果表明:随着预处理时间的延长,玉米秸秆的结构逐渐被破坏,木质素过氧化物酶活性逐渐降低,木聚糖酶和纤维素酶活性逐渐升高,最高分别达0.879和0.025 7 U/mg。放线菌、芽孢杆菌和曲霉菌是秸秆好氧生物预处理中的优势菌群。玉米秸秆经好氧生物预处理2 d,厌氧发酵产酸效果最佳,乙醇和挥发性脂肪酸产量为249.3 mg/g,比未处理提高了46.73%;玉米秸秆经好氧生物预处理5 d,乙醇和挥发性脂肪酸产量为138.2 mg/g,比未处理降低了18.66%。过长的玉米秸秆好氧预处理时间会使玉米秸秆中半纤维素、纤维素过度降解,这是造成玉米秸秆厌氧发酵产酸量下降的主要原因。以能源化、资源化为目的的玉米秸秆厌氧发酵预处理时,利用复合菌系好氧生物处理作为其预处理方法,应严格控制预处理时间,避免因为纤维素、半纤维素过度降解导致的产品产率下降问题。 相似文献
13.
玉米秸秆稀硫酸预处理条件的初步研究 总被引:24,自引:2,他引:24
初步探讨了利用稀硫酸对玉米秸秆进行水解的影响因素。硫酸浓度、水解温度、水解时间、秸秆粉粒度、灰分含量和固形物含量等对秸秆水解效率有一定影响。在硫酸浓度为1.0%,水解温度120℃,水解时间2 h,秸秆粉粒度20~40目,固形物含量10%的水解条件下,秸秆的水解率为19.2%,还原糖组成主要为木糖和葡萄糖。 相似文献
14.
研究了不同预处理方法对玉米秸秆发酵产氢气的影响和秸秆降解产氢的机理。实验分别采用酸解(AP)、酸解耦合固态酶解(AEP)、高温蒸煮(HP)和高温蒸煮耦合固态酶解(HEP)的玉米秸秆进行发酵产氢,分析预处理后秸秆累积产氢量与可溶性糖含量的关系。在此基础上,通过秸秆化学组成成分分析、傅里叶变换红外光谱(FT-IR)和X-射线衍射分析,探讨了秸秆降解的机理。结果表明,秸秆的累积产氢量与可溶性糖含量基本正相关,秸秆糖化效率是影响秸秆累积产氢量的主要因素。四种预处理方法主要作用于秸秆半纤维素和纤维素的无定型区,预处理过程皆在不同程度上提高了秸秆的结晶度,并在极大程度上提高了玉米秸秆的累积产氢量。其中AEP方法预处理秸秆效果最好,累积产氢量达到了226.1 m L·(g·TS)-1。 相似文献
15.
不同脱毒方法对玉米秸秆水解液酒精发酵的影响 总被引:1,自引:1,他引:1
利用湿热预处理(195℃,15 min)后的玉米秸秆水解液,考察了3种不同脱毒方法(中和法、饱和生石灰法和Na2SO3法)对水解液中的抑制剂的去除效果,研究了树干毕赤酵母(Pichia stipitis 58376)对脱毒后的水解液酒精发酵情况.结果表明:玉米秸秆水解液经过3种方法脱毒处理后,醛类抑制荆(糠醛和5-羟甲... 相似文献
16.
《纤维素科学与技术》2015,(3):8-14
采用水抽提方法得到玉米秸秆中的水抽提液,研究水抽提液、水抽提液的稀酸水解液对水抽提玉米秸秆和稀酸预处理的水抽提玉米秸秆酶水解性能的影响。研究结果表明,与未处理玉米秸秆相比,水抽提玉米秸秆的酶水解性能有所提高,从48 h的9.88%提高到23.56%;与稀酸预处理玉米秸秆相比,稀酸预处理的水抽提玉米秸秆酶水解性能略有提高,从48 h的67.07%提高到73.44%;通过向水抽提玉米秸秆和稀酸预处理的水抽提玉米秸秆中添加水抽提液的酶水解结果表明,与未添加的空白样相比,添加水抽提液对酶水解得率的影响极小(2%以内),但水抽提液经过稀酸水解后再添加到水抽提玉米秸秆和稀酸预处理的水抽提玉米秸秆中,可以发现与未添加的空白样相比,酶水解得率大幅度降低,酶解48 h时分别下降了15.03%和13.96%,这说明水抽提液在稀酸预处理过程中产生了对酶水解有抑制作用的物质。因此,通过水抽提去除部分水抽提物可减少稀酸预处理过程中抑制物的产生,从而提高酶水解得率的能力。 相似文献
18.
19.
采用间歇式水热预处理方法,考察了不同水热预处理温度和处理时间对玉米秸秆主要成分变化的影响以及水热预处理后的纤维素酶解效率。在180~220℃,10~25 min范围内,随温度升高和时间延长预处理后半纤维素移除率和纤维素损失率也随之增大,但木质素质量并未减少反而有所增加。在210℃,25 min时得到最大半纤维素移除率为86.0%。以半纤维素移除率、木质素移除率和纤维素损失率为因变量,处理温度和处理时间为自变量通过多元线性回归分析或二次方程(多元线性回归方程拟合度不佳时)拟合分别获得回归模型。模型显示处理温度和处理时间对三者均具有显著影响。分析敏感性显示处理温度对三种因变量的影响均大于处理时间。经210℃,20 min处理后,纤维素酶解率最高为76.2%,继续提高处理温度和延长处理时间半纤维素移除率提高,但纤维素酶解率下降。 相似文献