首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三叶孔板换热器是一种新型纵流换热器,广泛应用于核电装备领域。针对目前使用较多的壳程“单元流道”模型的局限性,建立了三叶孔板换热器壳程整体模型,包括进出口接管。采用商用软件FLUENT14.0及RNG k-ε湍流模型对壳程流体流动与传热进行了数值研究,分析了三叶孔板换热器壳程流动与传热特性。结果表明:流经第一块支撑板后,流体已充分发展,并且随着壳程结构周期性变化,传热与压降也呈现周期性变化。在支撑板附近,流体流速变大,形成射流,并且由于支撑板阻挡,在支撑板前面和尾部产生二次流,能有效冲刷管壁,减薄流动边界层,起到强化传热作用。  相似文献   

2.
朱凌云  杨锦春  周帼彦  谭祥辉  郭震  朱辉  郎红方  朱冬生 《化工进展》2014,33(12):3183-3188,3193
建立了三叶孔板换热器壳程周期性全截面模型,利用商用软件Fluent14.0及RNG k-ε湍流模型对8种不同结构参数的换热器壳程流体流动及传热性能进行数值模拟。分析了支撑板间距、三叶孔孔高、导流筒结构形式等结构参数对三叶孔板换热器传热及阻力性能的影响,并对比不同结构换热器的综合换热性能。结果表明:壳程传热系数与压力梯度都分别随着支撑板间距和开孔高度的增加而减小,且支撑板间距和三叶孔孔高对三叶孔板换热器壳程压降的影响大于其对传热的影响;六边形结构的导流筒换热器换热性能优于圆形导流筒换热器;8种换热器模型中,支撑板间距400mm、三叶孔高3.3mm(模型4-2)的换热器综合性能最好,支撑板间距400mm、三叶孔高1.8mm(模型2-2)的换热器综合性能最差。  相似文献   

3.
三叶孔板换热器是一种新型纵向流换热器,由于其具有传热效率高、压降低、抗振结构性能优越等诸多优点而广泛应用于核电行业。搭建三叶孔板换热器壳程传热与压降测试平台,对传热和压降的测量结果进行不确定度分析。对4台三叶孔板换热器模型进行实验研究,结果表明随着Reynolds数的增大,壳程对流传热系数和压降在对数坐标内线性增大;在Reynolds数相同的情况下,随着支撑板间距的增大,三叶孔板换热器壳程Nusselt数逐渐减小,压降逐渐降低,同时压力梯度逐渐减小。为了进一步分析说明三叶孔板换热器壳程传热与阻力性能,基于Bell-Delaware法设计了具有相同结构参数的折流板换热器。与折流板换热器的对比结果表明:三叶孔板换热器壳程Nusselt数平均为折流板换热器的1.25倍,壳程整体压力平均为折流板换热器的0.77,综合性能平均为折流板换热器的1.62倍。  相似文献   

4.
三叶孔板换热器壳程流体流动和传热特性数值研究   总被引:3,自引:0,他引:3  
利用FLUENT软件对三叶孔板换热器壳程流体流动和传热特性进行了数值模拟研究,通过建立周期性全截面计算模型,对其强化传热机理进行了研究,分析了壳程内不同位置换热管壁面对流传热系数与换热管至壳体轴心距离的关系。结果表明:流体流经三叶孔时产生的射流以及在三叶孔板后产生的二次流动使壳程传热得到强化;三叶孔板换热器壳程内随着换热管至壳体轴心距离的增大,换热管壁面对流传热系数逐渐减小。  相似文献   

5.
侯夏玲  周帼彦  涂善东 《化工学报》2017,68(12):4517-4525
基于周期性全截面模型及RNG k-ε湍流模型,运用计算流体力学软件FLUENT对不同孔板结构换热器壳程流体流动以及传热性能进行了数值模拟分析,并通过文献试验数据验证了该数值模拟方法的可行性和准确性。在此基础上,对比分析了三叶孔、四叶孔、五叶孔、大圆孔、小圆孔等5种孔板结构的传热与阻力性能,探讨了支撑板等结构参数对其传热与阻力性能的影响,进一步采用场协同原理探讨了孔板换热器的强化传热机理。研究结果表明:采用RNG k-ε湍流模型以及周期性全截面模型可较为准确地模拟孔板换热器壳程流体流动情况;5种模型中五叶孔换热器的传热特性最好但阻力最大,小圆孔的传热效果最差但阻力最小;随着支撑板间距以及开孔高度的增加,换热器壳程的传热系数和压力降均逐渐降低;在支撑板后,速度矢量与温度梯度之间的夹角波动幅度变化剧烈,起到了强化壳程传热的效果;其中五叶孔板的场协同角波动幅度最大,强化传热效果最好。  相似文献   

6.
基于周期性全截面模型及RNG k-ε湍流模型,运用计算流体力学软件FLUENT对不同孔板结构换热器壳程流体流动以及传热性能进行了数值模拟分析,并通过文献试验数据验证了该数值模拟方法的可行性和准确性。在此基础上,对比分析了三叶孔、四叶孔、五叶孔、大圆孔、小圆孔等5种孔板结构的传热与阻力性能,探讨了支撑板等结构参数对其传热与阻力性能的影响,进一步采用场协同原理探讨了孔板换热器的强化传热机理。研究结果表明:采用RNG k-ε湍流模型以及周期性全截面模型可较为准确地模拟孔板换热器壳程流体流动情况;5种模型中五叶孔换热器的传热特性最好但阻力最大,小圆孔的传热效果最差但阻力最小;随着支撑板间距以及开孔高度的增加,换热器壳程的传热系数和压力降均逐渐降低;在支撑板后,速度矢量与温度梯度之间的夹角波动幅度变化剧烈,起到了强化壳程传热的效果;其中五叶孔板的场协同角波动幅度最大,强化传热效果最好。  相似文献   

7.
为了解决传统弓形折流板换热器壳侧存在流动死区、流动阻力大、传热效率低等问题,对折流板进行开孔,采用数值模拟的方法,研究开孔折流板结构对U型列管式换热器壳程流体流动、传热及流阻性能的影响。研究结果表明,折流板开孔后,U管换热器壳程流动死区明显减少,壳程流体的传热系数和场协同数随着开孔率的增加都是先增加后减小,并且在开孔率为a=0.242时均达到最大值。折流板开孔前后壳程总体压降变化<4.3%,当开孔率为a=0.177时壳程的压降最小。在折流板开孔率为a=0.242时,U管换热器综合性能最佳。本研究可为U管换热器弓形折流板开孔提供优化依据,为提高U管换热器的综合性能提供参考和借鉴。  相似文献   

8.
应用CFD软件对网状孔板换热器壳程流体流动及换热特性进行了数值模拟研究,揭示了网状孔板强化传热的机理,分析了孔板间距及开孔率对其换热、压降性能的影响,推导出网状孔板纵向流换热器壳程换热与流动的准数关系式. 结果表明,流体流过网状孔板产生射流及二次流现象,强化了壳程流体的传热;在Re=2300~6300范围内,网状孔板换热器比弓形折流板换热器的Nu数增大约50%,但压降比弓形折流板换热器高约2.5倍;在研究范围内,孔板间距减小、开孔率减小均能使壳程流体的Nu数及压降增大,且Re数越大,开孔率、折流板间距对Nu数及压降的影响越大;但随开孔率、折流板间距减小,流体压降增加的速度明显比Nu数快.  相似文献   

9.
邓先和  徐国想  陆恩锡 《化学工程》2003,31(1):30-34,39
对螺旋折流孔板管壳式换热器壳程的传热与流体阻力做了研究 ,给出换热器壳程传热与流阻的计算关联式 ,并采用实验模型对换热器壳程流体旋转流的阻力系数与传热管的局部传热系数做了测试 ,且对光滑和菱形翅片两种管型作了对比  相似文献   

10.
为了研究三叶孔板换热器壳程周期性充分发展段的范围,利用数值模拟分析对其整体模型的壳程进行流动及传热研究:从定义出发,分别以速度、压降及无因次温度为研究对象在不同Re下界定壳程的周期性充分发展段段。在研究范围中发现:周期段的区间从第二块支撑板开始到最后一块支撑结束;在相同流量下,壳程流体在支撑板处的流体速度明显高于其他截面速度。几何段压力降随着壳程Re的增大而随之增大。  相似文献   

11.
纵流壳程换热器传热性能研究进展   总被引:1,自引:0,他引:1  
基于折流杆、整圆形孔板、管束自支撑及空心环支撑等纵流换热器壳程的结构特点,从实验和数值模拟两方面阐述了这些换热器壳程流体流动和传热的研究现状,归纳总结了其传热和阻力性能的计算关联式,对比分析了其适用工况,为纵流换热器的进一步发展和应用提供指导。  相似文献   

12.
对比分析了管壳式换热器壳程传热强化的主要方式和壳程管束支撑结构的研究进展。大多数管壳式换热器壳程强化结构兼具管束支撑的功能,主要以不同形式的折流杆、整圆形孔板、空心环、管束自支撑和螺旋折流板等代替传统的弓形折流档板,结构的优化提高了换热器壳程传热系数,且有效降低了壳程的流动阻力,缓减了换热器壳侧管束的振动和结垢,从而提高了换热器的传热性能。  相似文献   

13.
三叶孔板是以纵向流形式强化管壳式换热器性能的一种典型支撑板结构,具有附加阻力小和能够降低管束流激振动等诸多优势。为了分析三叶孔板对管壳式换热器壳程传热性能的强化效果和机理,本文依据周期性和对称性特征构建了不同孔高的换热器单元流道模型,采用重整化群k-ε湍流模型和SIMPLE耦合算法分析其壳程流场分布特征并评估其综合换热性能。结果表明,三叶孔板换热器Nu数和阻力系数较无孔板管壳式换热器均有所增加,相对Nu数(Nu/Nu_0)和相对阻力系数(f/f_0)随孔高H增大而减小,性能评价指标(performance evaluation indicators,PEC)随孔高H增大而增大。与无孔板管壳式换热器相比,三叶孔板换热器壳程纵向各处场协同角β较小而纵向涡强度?_x较大,因此场协同性的改善和纵向涡强度的提高是三叶孔板强化换热的原因。  相似文献   

14.
杨威  余雏麟  程涛  邓科  季敏东  曾敏 《化学工程》2019,47(10):53-57
为揭示大小孔折流板换热器壳侧传热的机理,对大小孔折流板换热器壳侧的传热和阻力特性进行了实验研究,并利用标准k-ε湍流模型进行了数值模拟。结果表明:不同进口雷诺数下,大小孔换热器壳程传热效率数值模拟值与实验值误差为7.9%,压降与实验值误差约为3.1%,数值计算模型用于大小孔折流板换热器的研究是正确可行的;流体经过小孔时,流体具有射流加速的效应,其局部传热系数和局部阻力系数都会增大,大小孔折流板换热器具有较高的壳程传热系数和较低的壳程压降。  相似文献   

15.
张勇  闫媛媛  杨飞 《化工装备技术》2013,34(3):49-52,58
利用Pro/E对弓形折流板换热器进行了参数化建模,采用ANSYS-CFX对换热器壳程流体的流动与传热做了模拟分析。从数值模拟的角度分析了单弓形折流板换热器壳程振动和传热"死区"产生的原因,研究了不同折流板间距、不同折流板缺口高度及不同进口流速对换热器壳侧传热和压降的影响,并在此基础上对换热器的结构提出了优化措施。  相似文献   

16.
基于梅花孔板纵向流换热器的三维物理模型,采用RNG k-e湍流模型,对其壳程流动与传热特性进行了数值模拟,以空气为工作介质,考察了孔板开孔率y=0.148, 0.18和0.214的换热器在雷诺数Re=4000~12000范围内的传热和压降. 结果表明,流体流过梅花孔后产生贴壁射流,射流的卷吸和二次流作用有利于流体的混合与传热. 换热器壳程平均努塞尔数Nu和单位长度压降Dp/lz均随开孔率y和折流板间距L减小而增大;与相同条件下弓形折流板换热器相比,在研究范围内,该流换热器的Nu提高了14.9%~52.88%,Dp增减幅度为152.85%~-16.62%,综合性能系数PEC为1.03~1.44,适当增大开孔率y和孔板间距L可提高换热器的综合传热性能.  相似文献   

17.
通过合理简化,建立管壳式换热器的实体模型,用大型CFD(computational fluid dynamics)软件FLUENT对于管壳式换热器壳程的流体流动与传热性能进行数值模拟研究.利用判断周期性充分发展段的3个主要特征,分别从压力差、无因次温度、速度3个方面,分析具有不同流体速度、不同流体介质、不同折流板间距时几种折流板管壳式换热器模型的进出口段对于壳程流体流动与传热性能的影响.结果表明,管壳式换热器结构一定的情况下,进出口段对壳程流体流动和传热周期性充分发展段的影响长度不随壳程流体性质、流动速度的变化而变化;随着折流板间距与筒体内径的比值增大而增大.  相似文献   

18.
通过对不同螺旋角的螺旋折流板换热器壳程流体流动和传热进行研究,得出壳程进口未充分发展段的分布规律;并在考虑壳程结构特点的基础上,提出了一种新型变角度的螺旋折流板模型,改善壳程进口未充分发展段对换热器的影响。结果表明:换热器折流板的导流作用随着折流板螺旋角的增大而降低,螺旋角的增大使换热器壳程进口流体螺旋流动减弱,螺旋流动未充分发展段长度增加。变角度的螺旋折流板能够有效改善换热器壳程进口未充分发展段的作用,相同工况下通过优化变角度螺旋折流板α角,可使换热器壳程传热系数增加8.9%—9.1%,壳程压力损失增加5.8%—6.9%,综合性能增加6.6%—6.9%。计算结果为改进换热器螺旋折流板结构、强化换热器传热提供了理论依据。  相似文献   

19.
采用ANSYS CFX对梅花形孔板换热器壳程的流动和传热进行了数值模拟研究,通过分析壳程流场揭示了孔板换热器壳程强化换热机理,得到了3种不同开孔率的孔板换热器壳程平均努塞尔数Nu以及压降Δp随雷诺数变化的规律。结果表明:由于孔板处流道面积较小,流体产生射流效应并伴有二次流现象,在破坏流动边界层的同时增强了流体扰动,强化了换热;3种换热器的Nu和Δp都随雷诺数的增加而增大,开孔率越低换热器的换热性能越好,但壳程压降也越大;开孔率0.215的换热器综合性能参数(Nu/Δp)比开孔率0.173和0.130的换热器平均高28.8%和50.14%。  相似文献   

20.
换热器是化工生产的重要设备之一,为了解决传统的弓形折流板换热器存在压降过大和换热效率低的问题,设计了一种新型的梅花形孔板换热器。针对使用简化模型进行模拟研究的局限性,构建了梅花形孔板换热器壳程全三维模型。采用CFX模拟比较了梅花形孔板换热器与弓形折流板换热器壳程的流动换热特性,并进一步研究了孔板间距与换热器性能的相关性,得到了换热管外表面平均对流换热系数h,以及壳程压降Δp随雷诺数Re变化的规律。研究结果表明:梅花形孔板换热器可以有效消除折流板换热器中存在的流动死区并减少壳程压降,同时孔板处流体形成射流破坏流动边界层,强化换热。在模拟雷诺数范围内,孔板换热器的综合性能参数h/Δp相比折流板换热器平均高约12%;相同雷诺数下孔板间距越大换热器综合性能越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号