共查询到20条相似文献,搜索用时 15 毫秒
1.
用溶胶-凝胶法制备Ti4+掺杂的Li2FeSiO4/C正极材料。用XRD、HRTEM和电化学方法研究了该材料的结构、形貌和电化学性能。结果表明,掺杂适量的Ti4+不会改变Li2FeSiO4/C的正交晶系结构,可以稳定材料的结构,改善高倍率充放电性能。在室温下,Li2Fe0.97Ti0.03SiO4/C以0.1c倍率放电的首次放电比容量为149.1mA·h/g,20次循环后放电比容量为127.3mA·h/g,且不同倍率下的电化学性能明显优于未掺杂的Li2FeSiO4/C。交流阻抗谱研究表明,适量的Ti4+掺杂,减小了正极材料在充放电过程中的电荷传递电阻,增加了材料的电子电导率,改善了材料的电化学性能。 相似文献
2.
Mg2+掺杂对LiFePO4结构及电化学性能的影响 总被引:1,自引:0,他引:1
以MgAC2为掺杂源,采用固相反应法在惰性气氛下合成了掺Mg的LiFePO4正极材料,考察了Mg2 对于目标化合物物理及电化学性能的影响.采用粉末X射线衍射和扫描电镜技术对产物的结构、形貌及粒度等进行了表征,通过恒电流充放电和交流阻抗技术对其电化学性能进行了研究.结果表明:少量的Mg2 掺杂并未影响产物结构,但却有利于减小LiFePO4电荷转移过程中的阻抗,克服该过程中的动力学限制.在0.1C倍率下放电,掺杂LiFePO4与未掺杂LiFePO4的初始放电容量分别为136.9和111.8 mA·h/g,循环50次后,容量分别为135.6和83.9 mA·h/g;与未掺杂的LiFePO4相比,掺镁后的LiFePO4具有更为优良的循环性能. 相似文献
3.
LiFePO4具有优良的综合电化学性能,然而它的高倍率性能较差。为了提高其导电性能,进而改善高倍率电化学性能,利用高导电性Ti3SiC2来改性LiFePO4。采用球磨法将Ti3SiC2与LiFePO4进行均匀混合,研究Ti3SiC2添加量对LiFePO4电化学性能的影响。当Ti3SiC2质量分数为4%时,电化学综合性能最好。1、2、5 C的放电容量分别为131.7、119.6、97.4 mAh·g?1,而不加Ti3SiC2试样在相应倍率的放电容量仅为120.8、101.9、64.0 mAh·g?1;恒电位阶跃测试表明添加4% Ti3SiC2使锂离子的扩散速率从8.5×10?11 cm2·s?1提高到8.2×10?10 cm2·s?1;交流阻抗和循环伏安测试还发现Ti3SiC2的加入降低了电荷转移电阻,提高了电极材料的可逆性,从而改善了充放电过程中的动力学限制,提高了高倍率下的放电容量 相似文献
4.
锰掺杂对锂离子电池正极材料Li3V2(PO4)3/C性能的影响(英文) 总被引:1,自引:0,他引:1
采用溶胶-凝胶法合成Li3V2-2/3xMnx(PO4)3(0≤x≤0.12)。采用XRD、SEM、XPS、恒流充放电和电化学阻抗谱(EIS)研究Mn掺杂对Li3V2(PO4)3/C结构和电化学性能的影响。XRD研究表明:掺杂少量的Mn2+不会影响材料的结构,所有样品均具有单一相态的单斜结构(P21/n空间群)。XPS分析表明:在Li3V1.94Mn0.09(PO4)3/C中,V和Mn的化合价分别为+3和+2,原料中的柠檬酸在煅烧过程中分解成C而残留在Li3V1.94Mn0.09(PO4)3/C中。电化学测试表明:掺杂Mn改善了电极材料的循环性能和倍率性能,正极材料Li3V1.94Mn0.09(PO4)3/C表现出最好的循环稳定性和倍率性能。在40mA/g的放电电流密度下,循环100次后,Li3V1.94Mn0.09(PO4)3/C的放电容量从158.8mA·h/g衰减到120.5mA·h/g,容量保持率为75.9%,而未掺杂样品的放电容量从164.2mA·h/g衰减到72.6mA·h/g,容量保持率为44.2%。当放电电流密度增加到1C时,Li3V1.94Mn0.09(PO4)3/C的初始放电容量仍能达到146.4mA·h/g,循环100次后,放电容量保持为107.5mA·h/g。EIS测试表明,掺杂适量的Mn2+减小了电荷转移阻抗,这有利于Li+的脱嵌。 相似文献
5.
通过溶胶-凝胶法合成LiMnPO4/C锂离子电池复合材料,采用XRD、SEM和电化学性能测试对LiMnPO4/C进行性能表征。XRD研究表明,在500°C下能够合成得到纯的LiMnPO4;SEM研究表明,柠檬酸作为螯合剂和碳源能有效地抑制LiMnPO4/C颗粒的长大。在500°C下烧结10h合成的LiMnPO4/C样品的电化学性能最好,首次放电容量为122.6mA·h/g,以0.05C倍率循环30次后其容量为112.4mA·h/g。 相似文献
6.
Zn^2+掺杂对锂离子电池正极材料LiFePO4性能的影响 总被引:1,自引:2,他引:1
以Zn(NO4)2·6H2O为Zn源,蔗糖为C源,对LiFePO4进行了Fe位掺杂和包覆研究.用XRD、交流阻抗方法和恒流充放电研究了材料的结构和电化学性能.结果表明:包覆掺杂后的材料具有橄榄石型晶体结构.从LiFePO4、LiZn0.01Fe0.09PO4到LiZn0.01Fe0.99PO4/C其电荷转移阻抗逐渐减小,材料的可逆性能逐渐增强.掺杂后的材料初始容量和循环性能都得到明显的改善,在0.1C的倍率下,LiFePO4、LiZn0.01Fe0.99PO4和LiZn0.041Fe0.99PO4/C首次放电容量分别为93.1mAh·g-1、130.4mAh·g-1和159.2 mAh·g-1.放电倍率提高到0.5C时,LiZn0.01Fe0.99PO4/C首次放电容量仍有137.3 mAh·g-1,其后的70次循环容量衰减仅4.3%. 相似文献
7.
采用工业上常用的碳酸锰热解法制备锰氧化物前驱体,与Li2CO3混合后焙烧得到锂离子电池正极材料LiMn2O4,并在碳酸锰制备过程中掺入铝离子制备LiAlxMn2?xO4(x=0.01,0.02,0.03,0.05,0.1)。通过X射线衍射(XRD)和扫描电镜(SEM)对样品进行表征,并对合成材料在常温和高温(55℃)下的电化学性能进行研究。结果表明:合成的前驱体及锰酸锂材料均无杂相;随着Al3+掺杂量的增加,LiAlxMn2-xO4颗粒尺寸不断长大;材料的首次充放电比容量随Al3+掺杂量的升高而下降,但循环性能提高;Al3+的掺入极大地提高了材料的循环性能,尤其是在高温条件下,当掺杂量x=0.05时,1C倍率下循环100次容量的保持率由未掺杂的72.2%升高到90.7%。 相似文献
8.
以Li2SiO3、Mn(CH3COO)2.4H2O和Al(OH)3为原料,用传统高温固相合成法成功制备出Li2Al0.1Mn0.9SiO4锂离子电池正极材料。采用XRD、FESEM分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料的电化学性能。研究结果表明,固相合成的产物主相为Li2Al0.1Mn0.9SiO4,同时存在少量的杂质,产物表面形貌为非球形颗粒,颗粒尺寸为100~500 nm。实验结果表明,Al掺杂后,正极材料的可逆容量和循环寿命都得到提高。正极材料电化学性能提高的机理在于Al掺杂稳定了Li2MnSiO4正极材料的结构。 相似文献
9.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。 相似文献
10.
利用微乳液法在温和条件下合成Li_2FeSiO_4/C的前驱体,煅烧后得到蠕虫形纳米Li_2FeSiO_4/C正极材料。用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征。通过恒流充放电对材料的电化学性能进行测试。结果表明,采用此法合成的前驱体在700℃煅烧9 h得到的蠕虫形Li_2FeSiO_4/C在室温、1.5~4.8 V的电压范围内,于C/16、C/8和1C倍率下的首次放电容量分别为140.1,139和94.0 mAh/g,循环20次后的容量保有率分别为96.4%,81.2%和73.5%。该样品具有良好的循环稳定性与倍率性能。 相似文献
11.
以Fe2O3为铁源,采用高温固相法制备了Y3+掺杂的LiFePO4/C复合材料。利用TG-DSC、XRD、SEM、恒电流充放电等手段对材料的合成反应历程、粉体颗粒形貌以及电化学性能进行了研究。结果表明:Fe3+在300~550℃间被还原为Fe2+,经过650℃煅烧后,形成晶型单一的橄榄石结构晶体。LiFe0.98Y0.02PO4/C样品在0.2 C倍率下的首次放电比容量达到了151.6 mA.h/g。 相似文献
12.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16... 相似文献
13.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能 总被引:2,自引:1,他引:2
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。 相似文献
14.
纳米MnO2的制备及电化学性能研究 总被引:14,自引:2,他引:14
采用溶胶-凝胶法(sol-gel)制备了纳米MnO2,并对其进行了酸化和高温处理.采用化学分析、XRD、红外光谱、循环伏安、恒流放电等测试方法对处理前后的样品进行分析.研究结果表明,酸化后的样品氧化度和表面积增大,粒径减小,放电容量增大;经过500℃高温及酸化处理后的样品,其氧化度更高,粒径更小,其原因可能是高温酸化后,样品中的质子与O2-更易结合,从而使样品的活性提高.制备的纳米MnO2与电解二氧化锰(EMD)相比,在-0.4 V处,其放电容量高出52%. 相似文献
15.
以V2O5·nH2O、LiOH·H2O、NH4H2PO4和蔗糖为原料,采用研磨溶胶凝胶技术制备了无定形Li3V2(PO4)3前驱体,再经过焙烧获得具有单斜结构的介孔Li3V2(PO4)3正极材料,并用XRD、SEM、TEM、比表面积和电化学性能测试来表征材料的性能。研究表明,在700°C下焙烧的样品具有良好的介孔结构、最大的比表面积(188cm2/g)和最小的孔径(9.3nm)。在0.2C倍率下,该介孔样品的首次放电容量达155.9mA·h/g,经过50次循环后其容量仍然可达154mA·h/g,表现出非常稳定的放电性能。 相似文献
16.
LiFePO4/C锂离子电池正极材料的电化学性能 总被引:7,自引:2,他引:7
以碳凝胶作为碳添加剂,采用固相法制备了复合型LiFePO4/C锂离子电池正极材料.研究了不同掺碳量对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.结果表明:样品中的碳含量(质量分数)分别为0%、5%、10%、22%,所得样品均为单一的橄榄石型晶体结构,碳的加入使LiFePO4颗粒粒径减小.另外,碳分散于晶体颗粒之间,增强了颗粒之间的导电性.合成样品的电化学性能测试结果表明,掺碳后的LiFePO4放电比容量和循环性能都得到显著改善.其中,含碳量为22%的LiFePO4/C在0.1 C倍率下放电,首次放电容量达143.4 mA·h/g,充放电循环6次后电容量为142.7 mA·h/g,容量仅衰减0.7%. 相似文献
17.
研究了掺杂锂元素对用作锂离子电池负极的石墨材料的结构与性能的影响. XRD及元素分析结果表明 锂以化合物的形式存在于石墨材料中, 由于缺陷结构的增加, 掺杂后石墨材料的BET比表面积略有增大. 电化学测试结果表明 预先掺锂能够有效减少首次充放电过程中的不可逆容量, 使石墨电极的可逆容量增加. 与未掺杂的热处理石墨比较, 可逆嵌锂容量由304.5 mA*h/g增加到312.2 mA*h/g, 首次充放电不可逆容量由66.4 mA*h/g减少到52.9 mA*h/g. 以掺锂改性石墨为负极制作成063448型锂离子电池后, 电池的容量和循环稳定性均得到改善, 以1C倍率充放电时, 放电容量可达845 mA*h, 循环200次后的容量保持率为91.65%. 相似文献
18.
分别采用混合氢氧化物法和溶胶.凝胶法制备了三元的锂离子电池LiNi0.4Co0.2Mn0.4O2正极材料。采用XRD,SEM以及BET等方法对正极材料进行表征,并对其电化学性能进行测试。实验结果表明,不同的合成方法和工艺条件导致了材料的晶相结构、表观形貌、比表面积以及电化学性能上的差异。LiNi0.4Co0.2Mn0.4O2正极材料中出现的阳离子相互占位将导致其电化学性能变差。与溶胶.凝胶法制备的样品相比,混合氢氧化物法制备的样品具有较高的比表面积(3.2m2/g)和较高的放电比容量。在充放电电压范围为2.5~4.3V、充放电电流为20mA/g条件下,混合氢氧化物法所制备样品的首次放电比容量为180.1mAh·g^-1,20次循环后放电容量为160.2mAh·g^-1,并显示出较好的循环稳定性。 相似文献
19.
一步固相合成Nb掺杂LiFePO4/C及其电化学性能 总被引:1,自引:4,他引:1
用廉价的三价铁离子化合物为铁源,以聚丙烯为还原剂和碳源,在一步固相法合成Nb掺杂LiFePO4的同时实现颗粒表面碳导电膜的原位包覆。结果表明:一步固相合成的Nb掺杂LiFePO4/C具有完整的橄榄石型LiFePO4晶体结构和近似球状的颗粒形貌,颗粒尺寸为100~500 nm;聚丙烯分解后在颗粒表面和颗粒之间形成连通的网络状碳膜。电化学测试结果表明,当Nb的掺入量为1.0%(摩尔分数)时具有最好的倍率放电性能和循环性能;在2C充放电时具有130 mA.h/g的放电容量,循环100次容量无衰减,在4C充放电时仍具有105 mA.h/g的放电容量。 相似文献
20.
采用共沉淀-微波法制备了Co掺杂的锂离子电池正极材料LiFe1-xCoxPO4/C(x=0.00、0.01、0.03、0.05、0.07、0.09).研究了微波时间、柠檬酸量、掺Co量等因素对材料结构、形貌和电性能的影响.XRD、SEM和电化学测试表明:该方法制备的样品为橄榄石型非晶结构,粒径尺寸为0.5~5 μm,颗粒分布比较均匀.微波15 min、柠檬酸量为20wt%时,LiFePO4/C电化学性能最优,0.1C倍率放电可达124 mA·h/g,第20次循环的比容量为117mA·h/g.掺杂Co在很大程度上可以提高LiFePO4/C的电化学性能,当Co含量为5wt%时,LiFe0.95Co0.05PO4/C的比容量为最大值,0.1C倍率放电可达136 mA·h/g,第20次循环的比容量为125 mA· h/g,容量保持率为91.9%. 相似文献