首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid bacteria have been paid increasing attention as a probiotics, but their viability is affected by the various digestive processes of their host such as the acidic stomach solution and bile acids. The protection of Lactobacillus acidophilus JCM 1132 against the cytotoxic bile acids was examined by incorporating the bacteria in the inner-water phase of a W/O/W emulsion. Sodium glycodeoxycholate and sodium glycochenodeoxycholate (6 mmol/l each) significantly decreased the cell viability from 5.2×106 cfu/ml to 4.0×103 and 1.3×102 cfu/ml, respectively, when the bacteria were directly dispersed in the solutions at pH 7 for 2 h. However, their incorporation in the inner-water phase of the W/O/W emulsion improved the viabilities to 1.6×106 and 2.3×104 cfu/ml, respectively. This improvement was ascribed to the inclusion of the bacteria in the emulsion because the viability of the bacteria, which were dispersed with the emulsion containing no bacteria in the solution, was very low. Although sodium deoxycholate decreased the viability of the cells included in the W/O/W emulsion, the inclusion significantly improved the cell viability against primary and secondary bile acids.  相似文献   

2.
为对比不同米糠蛋白质量浓度下O/W及W/O/W乳液的稳定性,以米糠蛋白作为基料,采用双乳化法制备O/W及W/O/W乳液,考察不同米糠蛋白质量浓度下乳液的微观形态和稳定性并探究其界面稳定机理。结果表明:W/O/W乳液的贮存稳定性显著优于O/W乳液;与相同蛋白含量的O/W乳液相比,W/O/W乳液的黏度显著提高;当米糠蛋白质量浓度为0.4 g/100 mL时,W/O/W乳液的稳定性较O/W乳液提高了1 倍以上;乳液内部包裹更多的W/O液滴,W/O/W乳液的粒径较大;而此时静电斥力也较大,起到稳定乳液的目的。同时,米糠蛋白质量浓度不小于0.4 g/100 mL时,O/W及W/O/W乳液中蛋白质的吸附率较高,达到78%以上。本研究为天然米糠蛋白质在食品级乳液中的开发提供参考,为粮食副产物的综合利用提供了新思路。  相似文献   

3.
Water-in-oil-in-water (W/O/W) emulsions were formulated based on rapeseed oil, olive oil, olein and miglyol. Polyglycerol polyricinoleate and sodium caseinate were used as lipophilic and hydrophilic emulsifiers, respectively. Magnesium was encapsulated in the inner aqueous droplets. Emulsion stability was assayed through particle sizing and magnesium release at two storage temperatures (4 and 25 °C) over 1 month. Irrespective of the oil nature, both the primary W/O and W/O/W emulsions were quite stable regarding the size parameters, with 10-μm fat globules and 1-μm internal water droplets. Magnesium leakage from W/O/W emulsions was influenced by the oil type used in the formulation: the higher leakage values were obtained for the oils characterized by the lower viscosity and the higher proportion of saturated fatty acids. Magnesium release was not due to droplet–globule coalescence but rather to diffusion and/or permeation mechanisms with a characteristic rate that varied over time. In addition, W/O/W emulsions were resistant to various thermal treatments that mimicked that used in pasteurization processes. Finally, when W/O/W emulsions were placed in the presence of pancreatic lipase, the emulsion triglycerides were hydrolysed by the enzyme. These results indicated a possible use of W/O/W emulsions loaded with magnesium ions in food applications.  相似文献   

4.
The aim of this study was to compare the characteristics of an O/W emulsion and a W/O/W emulsion, formulated with similar ingredients. The physical properties of these two types of vehicles were characterized first. Using three types of in vitro models, human skin biopsies, nitrate acetate cellulose membranes and human reconstituted epidermis, the delivery potential of each vehicle for one hydrophilic drug, caffeine, was compared. The assessment of physical parameters, such as particle size, conductivity and rheological behavior enabled the nature of the test emulsions to be clearly identified. Clear differences were observed in the ability of each type of emulsion to deliver caffeine. Whatever the nature of the membrane used for the pharmacokinetic study, the absorption of caffeine was roughly two-fold lower (2.6 for human skin) when the W/O/W multiple emulsion was used as the vehicle. The concomitant determination of physical and kinetic properties of these two test emulsions allowed the W/O/W multiple emulsion and a simple O/W emulsion to be clearly differentiated.  相似文献   

5.
Water-in-oil-in-water (W/O/W) double emulsions present a reduced-fat alternative to conventional O/W food emulsions, as part of the dispersed oil phase is replaced with water. In this study, the concept of a reduced-fat whipped topping produced by W/O/W technology was proven. Whipping of a W/O/W emulsion, containing only 20% oil phase and a solid fat content of 78%, produced a superior whipped topping, in terms of firmness and overrun, compared to its whipped O/W emulsion counterparts. The presence of PGPR in the oil phase increased structure formation during whipping, while the additional dispersed-phase volume resulted in a better air inclusion. Two commercial monoacylglycerols (saturated and unsaturated) were investigated to improve the whipping properties of the produced W/O/W double emulsion. Both increased the susceptibility towards partial coalescence, thereby reducing whipping time and overrun, while increasing firmness of the produced whipped topping. Furthermore, the effect was stronger for the unsaturated than for the saturated monoacylglycerol.  相似文献   

6.
ABSTRACT: In this study we tried to prepare stable water-in-oil-in-water (W/O/W) emulsions using polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier and whey protein isolate (WPI) as a hydrophilic emulsifier. At first, water-in-oil (W/O) emulsions was prepared, and then 40 wt% of this W/O emulsion was homogenized with 60 wt% aqueous solution of different WPI contents (2, 4, and 6 wt% WPI) using a high-pressure homogenizer (14 and 22 MPa) to produce W/O/W emulsions. The mean size of final W/O/W droplets ranged from 3.3 to 9.9 μm in diameter depending on the concentrations of PGPR and WPI. It was shown that most of the W/O/W droplets were small (<5 μm) in size but a small population of large oil droplets (d > 20 μm) was also occasionally observed. W/O/W emulsions prepared at the homogenization pressure of 22 MPa had a larger mean droplet size than that prepared at 14 MPa, and showed a microstructure consisting of mainly approximately 6 to 7-μm droplets. When a water-soluble dye PTSA as a model ingredient was loaded in the inner water phase, all W/O/W emulsions showed a high encapsulation efficiency of the dye (>90%) in the inner water phase. Even after 2 wk of storage, >90% of the encapsulated dye still remained in the inner water phase; however, severe droplet aggregation was observed at relatively high PGPR and WPI concentrations.  相似文献   

7.
Iron (Fe3+) was encapsulated within the internal aqueous phase of water-in-oil-in-water (W/O/W) emulsions, and then the impact of this iron on the oxidative stability of fish oil droplets was examined. There was no significant change in lipid droplet diameter in the W/O/W emulsions during 7 days storage, suggesting that the emulsions were stable to lipid droplet flocculation and coalescence, and internal water diffusion/expulsion. The initial iron encapsulation (4 mg/100 g emulsion) within the internal aqueous phase of the water-in-oil (W/O) emulsions was high (>99.75%), although, a small amount leaked out over 7 days storage (≈10 μg/100 g emulsion). When W/O/W emulsions were mixed with fish oil droplets the thiobarbituric acid-reactive substances (TBARS) formed decreased (compared to fish oil droplets alone) by an amount that depended on iron concentration and location, i.e., no added iron < iron in external aqueous phase < iron in internal aqueous phase. These differences were attributed to the impact of W/O droplets on the concentration and location of iron and lipid oxidation reaction products within the system.  相似文献   

8.
This study aims to examine the microstructure, rheology and lipolysis of water-in-oil (W/O) emulsions (40 wt.%) prepared with or without (Control) the addition of normal (NAM) and high amylose (HAM) maize starch during simulated digestion in a semi-dynamic gastrointestinal tract (GIT) model. Microstructural examinations showed modification in initial W/O emulsion droplets to multiple W1/O/W2 droplets during in vitro digestion. This is in line with the rheological results, where the shear viscosity and moduli in the oral phase were remarkably reduced after entering the intestinal phase. In comparison to control and NAM emulsions, HAM emulsions showed a more compact and continuous network structure and greater viscosity and elastic modulus throughout GIT digestion. These results support lipolysis, where fewer free fatty acids were released in the HAM emulsion (70%) than in the control (86%) and NAM (78%) emulsions. This work has provided an in-depth understanding of the digestion of W/O emulsions as influenced by amylose content, which is meaningful for the development of low-fat products with reduced lipid digestibility.  相似文献   

9.
Freezing and thawing of oil‐in‐water (O/W) emulsion‐type foods bring about oil–water separation and deterioration; hence, the effects of freezing and thawing conditions on the destabilization of O/W emulsions were examined. The freezing rate and thawing temperature hardly affected the stability of the O/W emulsion. O/W emulsions having different oil fractions were stored at temperatures ranging from –30 to –20 °C and then thawed. The stability after thawing depended on the storage temperature, irrespective of the oil fraction of the emulsion. A good correlation was found between the time at which the stability began to decrease and the time taken for the oil to crystalize. These results indicated that the dominant cause for the destabilization of the O/W emulsion during freezing and thawing is the crystallization of the oil phase and that the effects of the freezing and thawing rates on the stability are insignificant.  相似文献   

10.
Grape (Kyoho) skin, used to retard lipid oxidation in edible oil foods, was investigated to reduce lipid oxidation in an oil-in-water (O/W) emulsion during 20 day of storage. The antioxidant efficacy of Kyoho skin extracts in O/W emulsions was determined by the measurement of secondary oxidation products. Moreover, principal component analysis (PCA) was conducted to determine similarities between emulsions treated with or without Kyoho skin extracts and standards. The data revealed that Kyoho skin extracts exhibited >93% inhibition and reported a similar p-anisidine (4.30–20.71) and TBARS (6.08–11.15 mg MDA L−1) values over the standards during 20 day of storage. PCA (PCs 1 (51.83%) and 2 (18.85%)) demonstrated a similarity in the contribution of Kyoho skin extracts over the synthetic antioxidants in O/W emulsion. Overall, these findings highlighted the possibility of using Kyoho skin extracts as natural antioxidants to decrease oxidative rancidity in foods.  相似文献   

11.
W/O/W多重乳状液的实验研究   总被引:2,自引:0,他引:2  
研究了W/O/W多重乳状液的制备方法及影响其稳定性的因素。通过正交试验选出较佳的工艺参数,获得了较稳定的W/O/W多重乳状液。  相似文献   

12.
Semi-solid multiple W/O/W emulsions with low concentrations (0.8, 1.6 and 2.4% w/w) of lipophilic polymeric primary emulsifier PEG-30-dipolyhydroxystearate (PDHS) have been formulated. Both emulsions, primary and multiple, were prepared with high content of inner phase (Phi1 = Phi2 = 0.8). All the formulations differ only in the lipophilic emulsifier concentration. Evaluating several parameters such as macroscopic and microscopic aspect, droplet size, accelerated stability under centrifugation and flow and oscillatory rheological behaviour, assessed the multiple systems. It is possible to formulate the semi-solid W/O/W multiple emulsions with low concentrations of PDHS as the primary emulsifier. It appeared that the highest long-term stable multiple emulsion with the lowest droplet size, the highest apparent viscosity and highest elastic characteristic, was the sample with the highest concentration (2.4% w/w) of the primary emulsifier.  相似文献   

13.
一种水包油包胶型乳液的制备及其在乳化肠中的应用   总被引:1,自引:0,他引:1  
以结冷胶和无水氯化钙为内水相凝固剂,酪蛋白酸钠为外水相乳化剂,制备一种水包油包胶(S/O/W)型 乳液。以多重乳液粒径和分布为指标,研究酪蛋白酸钠添加量对S/O/W型多重乳液加工适应性的影响。结果表明: 正交试验得到S/O型单重乳液最佳制备条件为:内水相中结冷胶添加量0.2%、无水氯化钙添加量0.5%;内水相乳化 剂聚甘油蓖麻醇酯添加量2.5%;油相为精炼猪油,油水体积比3∶2;剪切速率17 500 r/min,剪切时间1.5 min。将制 得的S/O型单重乳液与不同添加量酪蛋白酸钠混合制得S/O/W型多重乳液。当酪蛋白酸钠添加量0.1%时,S/O/W型 多重乳液粒径符合加工要求,且贮藏、热处理、剪切稳定性较好。以多重乳液替代猪脂肪制备的低脂乳化肠与高脂 (精炼猪油含量20%)乳化肠外观不存在明显差异;微观结构观察结果表明,多重乳液在乳化肠中包裹良好、分布 均匀。  相似文献   

14.
The present study was performed to investigate the possibility of using 4-α-glucanotransferase (4αGTase)-treated starch in W/O/W emulsions to increase their encapsulation efficiency (EE) and stability. Emulsions were prepared using soybean oil, polyglycerol polyricinoleate (PGPR), 4αGTase-treated starch and Tween 20. The mean diameter of W/O/W droplets ranged from 4 to 10 μm depending on the sonication time. When the dye was loaded in the internal water phase, the emulsion prepared by sonication for 1 and 2 min showed a high EE of the dye (>90%). The W/O/W emulsion prepared by sonication for 3 min showed an EE of <90%, but this EE was improved by adding 4αGTase-treated starch to the internal water phase. 4αGTase-treated starch was added to the internal water phase of W/O/W emulsions prepared with a low concentration of PGPR, and the PGPR concentration required to maintain an EE >90% was reduced. W/O/W emulsions containing 4αGTase-treated starch also showed better stability against heating and shearing stresses. These results indicated that 4αGTase-treated starch could be used in the preparation of W/O/W emulsions, which would allow the formulation of W/O/W emulsions with a reduced surfactant concentration.  相似文献   

15.
Probiotics have demonstrated various health benefits but have poor stability to sustain food processing and storage conditions, as well as after ingestion. Biopolymer beads are commonly studied to encapsulate probiotic cells to improve their stability, but the millimeter-dimension of these beads may not meet the quality requirement of food products. The aim of this study was to enhance the viability of Lactobacillus salivarius NRRL B-30514 by encapsulation in emulsion droplets with multiple lipid-protein-pectin layers. Spray-dried L. salivarius was suspended in melted anhydrous milk fat that was then emulsified in a neutral aqueous phase with whey protein isolate or sodium caseinate to prepare primary solid/oil/water (S/O/W) emulsions. Subsequently, pectin was electrostatically deposited onto the droplet surface at pH 3.0 to form secondary emulsions. The encapsulation efficiency was up to 90%. After 20-day storage at 4 °C, the viable cell counts of bacteria in secondary emulsions at pH 3.0 and primary emulsions at 7.0 were 3 log higher than the respective free cell controls. After heating at 63 °C for 30 min, free L. salivarius was inactivated to be undetectable, while about 2.0 log CFU/mL was observed for primary (at pH 7.0) and secondary (at pH 3.0) emulsion treatments. Additionally, a 5 log-CFU/g-powder reduction was observed after spray drying free L. salivarius, while a 2 log CFU/g reduction was observed for emulsion treatments with capsules smaller than 20 μm. Furthermore, cross-linking the secondary emulsion with calcium enhanced the viability of L. salivarius after the simulated gastric and intestinal digestions. Therefore, the studied S/O/W emulsion systems may be used to improve the viability of probiotics during processing, storage, and gastrointestinal digestion.  相似文献   

16.
In this study, seaweed polysaccharides (alginate and carrageenan) were modified with dodecenylsuccinic anhydride (DSA), and their stabilising properties in oil-in-water (O/W) emulsion system were evaluated. The physicochemical characteristics were determined by droplet size, interfacial tension and ζ-potential and structurally verified by Fourier transform infrared spectroscopy (FTIR). Both CRG-DSA and ALG-DSA applied in O/W emulsion system exhibited smaller droplet sizes over the increasing concentration and were more stable during storage than native ones. The ζ-potential of DSA-modified seaweed polysaccharides has more negative charge compared with their native forms, owing to the additional carboxyl groups from modification reaction. In addition, DSA-modified seaweed polysaccharides decreased the interfacial tension at soybean oil–water interface from 23.1 and 23.9 mN m−1 to 14.2 and 13.6 mN m−1, respectively. The successful modification reaction was confirmed by FTIR analysis. This study demonstrated that DSA-modified seaweed polysaccharides may serve as prospective emulsifiers in food, pharmaceutical and other industrial fields.  相似文献   

17.
为探究超声处理大豆分离蛋白-壳聚糖(soybean protein isolate-chitosan,SPI-CS)复合物对形成O/W型乳 液性质的影响,主要研究了复合物表面疏水性、乳化活性、乳化稳定性与油-水界面张力、乳液粒径、乳液稳定性 之间的关系。结果表明:未经超声处理的SPI-CS复合物表面疏水性、乳化活性、乳化稳定性和界面吸附性较低,形 成的O/W型乳液粒径相对较大,约100 μm,乳液Zeta电位较低,乳滴有发生聚集的倾向。乳液贮存7 d后乳层析指数 最高。经超声处理后SPI-CS复合物形成的乳状液性质发生明显变化,随着超声功率的增加,形成的O/W型乳液的稳 定性有所增加:超声功率为400 W时SPI-CS复合物形成的乳液最为稳定,乳层析指数最低;当超声功率超过400 W 时,乳液的光学显微镜观察显示其粒径有所增大,同时乳液的Zeta电位、乳化活性和乳化稳定性明显下降,界面张 力降低缓慢。超声处理暴露了蛋白质分子的内部结构,使部分结构展开、柔性增加,促进了其与壳聚糖之间的静电 相互作用,说明超声处理的大豆分离蛋白与壳聚糖形成的复合物影响了O/W型乳液的稳定性及相关性质。  相似文献   

18.
High-speed and high-pressure homogenized O/W emulsions using medium chain triacylglycerols (MCT) as oil and Tween 20 as emulsifier, with mean droplet sizes ranging from 618.6 nm to 79.5 nm, have been successfully prepared. The enhanced anti-inflammation activity of curcumin encapsulated in O/W emulsions is evidenced by the mouse ear inflammation model. There is a 43% or 85% inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema of mouse ear for 618.6 nm and 79.5 nm 1% curcumin O/W emulsions, respectively, but a negligible effect is found for 1% curcumin in 10% Tween 20 water solution.  相似文献   

19.
W/O/W emulsion is an emerging system in developing new functional and low-calorie food products. The aim of this study is to produce food-grade monodisperse water-in-oil-in-water (W/O/W) emulsions loaded with a hydrophilic bioactive oleuropein. W/O/W emulsions were prepared via high-pressure homogenization and subsequent microchannel (MC) emulsification. The internal aqueous phase was a 5-mM sodium phosphate buffer containing d(+)-glucose (5 wt.%) and oleuropein (0.1–0.7 wt.%). The oil phase consisted of soybean oil and tetraglycerin monolaurate condensed ricinoleic acid esters (TGCR; 3–8 wt.%). The external aqueous phase was a 5-mM sodium phosphate buffer containing d(+)-glucose (5 wt.%) and decaglycerol monolaurate (1 wt.%). Oleuropein-loaded submicron W/O emulsions with average droplet diameters as small as 0.15 μm and monomodal droplet size distributions were prepared by high-pressure homogenization when applying high TGCR concentrations of 5–8 wt.% and low oleuropein concentrations of 0.1–0.3 wt.%. Monodisperse oleuropein-loaded W/O/W emulsions with average W/O droplet diameters of around 27 μm and coefficients of variation of below 5 % were successfully prepared when using a silicon MC array plate with wide channels of 5-μm depth and 18-μm width. The monodisperse W/O/W emulsions prepared at high TGCR concentrations and low oleuropein concentrations were the most stable during 40 days of storage. The adsorption behavior of oleuropein at the internal aqueous–oil interface was relevant to W/O/W emulsions microstructure and stability. The results are believed to provide useful information for successfully preparing stable monodisperse W/O/W emulsions loaded with hydrophilic functional compounds. The surface activity of the loaded material seems to be a key parameter in optimizing the formulation of W/O/W food emulsion.  相似文献   

20.
The water content of the stratum corneum plays an important role in providing skin suppleness and smoothness. The diffusion of water through the skin is limited primarily by the stratum corneum and the noncornified part of the epidermis has negligible water barrier properties. Multiple emulsions are vesicular systems utilized for the prolonged liberation of active ingredients. The O/W/O multiple emulsion type is employed in cosmetics because its high oil content is able to maintain an occlusive film (barrier) on the skin surface. The objective of this study was to determine the occlusive power of O/W/O multiple emulsions on gelatin support cells. The results showed that occlusive products form a uniform layer on the surface of gelatin after the test, whereas nonocclusive products form two layers: an aqueous phase on the gelatin, and an oil phase above the aqueous phase. Thus, the different occlusive powers are due to the homogeneity of this layer and to its ability to prevent water evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号