首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钒微合金化低碳钢高温变形动态再结晶   总被引:1,自引:0,他引:1  
利用热模拟压缩试验测定了不同钒含量的钒微合金化低碳钢在900~1000℃温度区间和0.1~1s-1变形速率范围内的真应力-真应变曲线.对曲线的分析表明:随钢中钒含量的增加,低碳钢的动态再结晶开始时间延长,变形奥氏体的动态再结晶名义激活能提高.实验钢薄膜试样的TEM观察表明,钢中的微量钒以固溶态存在于奥氏体中,微量的固溶钒对奥氏体动态再结晶起到抑制作用.  相似文献   

2.
耐候钢变形奥氏体的连续冷却转变   总被引:1,自引:0,他引:1  
采用膨胀法结合金相分析建立了耐候钢变形和未变形奥氏体的连续冷却转变曲线(CCT曲线).试验钢变形奥氏体的CCT曲线具有较宽的铁素体析出区,即有较宽的"速度窗口";铁素体区与贝氏体区之间有60~80 ℃的奥氏体稳定区,可作为"卷取窗口";贝氏体转变区的右侧端部封口等.所有这些特征为热轧生产双相钢提供了基本条件.  相似文献   

3.
应用液压机对690合金圆锥试样在3种不同温度下(1100、1140和1180℃)进行连续压缩变形实验,利用光学显微镜和背散射衍射技术研究690合金在热加工过程的动态再结晶行为.研究发现:在连续热压缩变形过程中动态再结晶以三叉晶界形核-原始晶界形核-孪晶形核(孪晶界和孪晶碎化)-晶内形核的顺序发展,而孪晶促进了690合金的再结晶过程.  相似文献   

4.
低碳钢热变形奥氏体的再结晶行为   总被引:2,自引:0,他引:2  
对热变形奥氏体的再结晶动力学和微观组织演变进行了模拟计算,对晶粒尺寸的模拟值和实测值作了比较,分析了化学成分对动态再结晶率的影响以及残余应变与变形温度的关系.结果表明:在温度较高、应变速率较低的条件下容易发生动态再结晶,随着变形温度的降低,发生动态再结晶的几率减小,而静态再结晶在前几道次进行得比较充分,随后进行得不充分,增加碳和锰的含量可以促进动态再结晶的发生,残余应变随变形温度的降低而增大,晶粒尺寸的模拟值和实测值吻合较好,表明所选用的模型有一定的参考价值.  相似文献   

5.
利用Gleeble-1500D热模拟试验机对316LN奥氏体不锈钢进行单道次热压缩试验,分别设置变形温度为900~1200℃、应变速率为0.001~10 s-1、真应变为0.1~0.9及试样的初始晶粒度为122~297μm之间,以研究热变形条件及初始晶粒度对316LN钢动态再结晶行为的影响.对试验数据进行处理,得到临界应变与峰值应变以及临界应力与峰值应力的比值分别为0.38和0.89,建立了动态再结晶动力学方程和晶粒尺寸演变方程.对建立的动态再结晶模型进行修正,将修正后的模型嵌入DEFORM-3D有限元模拟软件中进行计算,发现修正模型的模拟值和试验值符合较好,证明修正模型的准确性.  相似文献   

6.
通过Gleeble-1500热模拟试验机研究了321钢(/%:0.028C、0.69Si、1.21Mn、0.030P、0.001S、17.33Cr、9.19Ni、0.31Ti)单道次高温(900~1 200℃)压缩(0.01~1 s-1)时的动态再结晶。结果表明,变形温度越高,应变速率越低,321钢的软化作用越强,热变形条件下的真应力-真应变曲线一般没有明显的应力峰值,在应变速率0.01、0.1、1 s-1时321钢动态再结晶开始发生的温度分别为1 050、1 150、1 150℃;在1 200℃变形时,仍然只发生部分动态再结晶。321钢热变形激活能Q=422.72 kJ/mol,动态再结晶Z参数Z=εexp[422 720/(RT)],临界应变εc=0.035 67Z0.066 04。  相似文献   

7.
45钒非调质钢热变形后奥氏体的再结晶和沉淀   总被引:4,自引:2,他引:2  
郑炀曾  刘德富 《钢铁》1989,24(1):45-49
  相似文献   

8.
采用Gleeble高温压缩实验研究了变形条件对GH625合金高温变形动态再结晶的影响,结果表明:当变形程度较小时,原始晶粒内部出现大量孪晶,晶界呈现锯齿状凸出;随变形程度的增加,在晶界弓出部位开始形核,形成大量再结晶晶粒,随变形程度进一步增加,GH625合金动态再结晶体积分数增大,但是再结晶晶粒尺寸无明显变化;GH625合金动态再结晶是一个受变形温度和应变速率控制的过程,变形温度越高,动态再结晶越容易形核,应变速率越小,动态再结晶过程进行得越充分。在低应变速率条件下,GH625合金获得完全动态再结晶组织的温度随变形速率的升高而升高,而在高应变速率条件下必须考虑变形热效应对合金变形组织的影响。  相似文献   

9.
孔玉婷  张春玲  杨金凤  单梅 《钢铁》2014,49(8):81-87
 为了实现Cu-P-Cr-Ni-Mo耐候钢的铁素体晶粒细化从而充分提高其强塑性,通过热模拟压缩试验,利用金相、SEM、EBSD等微观组织分析方法研究了其在双相区的多道次压缩变形过程中的组织演变。结果表明,试验钢在变形过程中,第二相(马氏体、贝氏体)呈条带状分布于铁素体基体上,随着道次增加,铁素体晶粒逐步细化,第5道次变形后得到1.8 μm左右的超细晶铁素体。前期铁素体晶粒细化的主要机制是形变强化铁素体相变,即多道次的累积大变形使组织内畸变能增大,铁素体形核点增多,促进铁素体快速析出,形成细小铁素体晶粒;后面几道次变形中,随着应变量继续增大,在铁素体晶粒内形成大量亚晶界,且亚晶界逐步累积扭转成大角度晶界,分割原来的粗大晶粒,发生铁素体连续动态再结晶细化。  相似文献   

10.
钢轨钢热轧奥氏体动态再结晶研究   总被引:2,自引:1,他引:1  
孙本荣  张国柱 《钢铁》1991,26(6):31-35
  相似文献   

11.
研究了V-Ti微合金非调质钢38MnVS(/%:0.42C、0.76Si、1.33Mn、0.011S、0.013P、0.10V、0.02Ti)的奥氏体动态再结晶过程。通过Gleeble-3800热模拟试验机,研究了变形温度(950~1150℃)和变形速率(0.1~10s-1)对38MnVS钢奥氏体动态再结晶过程的影响,并建立了Zener-Hollomon参数为变量的方程、动态再结晶尺寸模型和动态再结晶状态图。结果表明,变形温度越高,变形速率越低,发生动态再结晶的临界驱动力越小,动态再结晶越易进行;微合金非调质钢38MnVS动态再结晶激活能为Qd=275.453 kJ/mol。  相似文献   

12.
实验用非调质钢48MnVS(/%:0.48C,0.60Si,1.50Mn,0.35Cr,0.14V,0.05S,0.020Al,0.0150N)由100t EAF冶炼,连铸成280 mm×360 mm坯,轧成Φ100 mm棒材。通过Gleeble-3800热模拟实验机研究了变形温度950~1150℃,变形速率0.1~10 s-1,变形量60%的单道次压缩钒微合金非调质钢48MnVS的奥氏体再结晶过程得出真应力-应变曲线,计算得出实验钢的动态再结晶晶粒尺寸模型和动态再结晶状态图。结果表明,钒微合金化非调质钢48MnVS变形温度越高,变形速率越低,则发生动态再结晶的形变储能越小,越容易发生动态再结晶。实验钢48MnVS的动态再结晶激活能为Qd=343.202 kJ/mol。  相似文献   

13.
在热回复条件下,采用Gleeble-1500D热/力模拟实验机,研究测试了高强耐候钢Q450NQR1(/%:0.05~0.10C、0.30~0.50Si、0.80~1.00Mn、≤0.020P、≤0.008S、0.20~0.40Cu、0.15~0.35Ni、0.40~0.60Cr)200mm×1 350 mm铸坯试样在700~1 000℃,热拉伸应变率5×10-3 s-1时的强度、塑性模量和断面收缩率。结果表明,随温度下降铸坯塑性模量(硬化系数)和强度增加,800℃时铸坯的强度随温度的变化速率出现明显转变;925~700℃时铸坯断面收缩率≤60%;为保证铸坯质量,在矫直过程铸坯表面温度应≥950℃。  相似文献   

14.
用Gleeble-1500D热模拟试验机和电子显微镜研究了在950~750℃不同温度下变形50%后0.05C- 0.13Nb钢的组织和析出相。结果表明,随变形温度由950℃下降至750℃,0.05C-0.13Nb钢中多边形铁索体含量(体积分数)由20%增至80%,多边形铁素体晶粒尺寸由9μm降至4μm;变形后的组织由多边形铁索体、粒状贝氏体和1~3μm马氏体/奥氏体岛组成;钢中的析出物为1~10 nm的Nb(C,N),随变形温度降低析出物数量增加。  相似文献   

15.
用热压缩试验方法研究了32Mn-7Cr-1Mo-0.3N奥氏体钢的动态再结晶。结果表明,在1150℃变形时,奥氏体已完全动态再结晶;在1100℃以下变形时,奥氏体发生部分动态再结晶。  相似文献   

16.
通过Gleeble-1500热/力模拟试验机,采用光学、电子显微技术及力学测试等方法,研究了800~950℃变形温度对汽车悬架用弹簧钢55SiCrA(%:0.56C、1.42Si、0.68Cr)组织和性能的影响。结果表明,随着变形温度的提高,相变开始温度和相变结束温度均逐渐下降,珠光体片层间距逐渐减小,变形温度为850~900℃时,珠光体片层间距为130~140 nm,抗拉强度为1 075~1 090 MPa,断面收缩率43.5%~44.0%,综合力学性能最佳。  相似文献   

17.
Ti-IF钢动态再结晶模型   总被引:1,自引:0,他引:1  
徐光  徐楚韶 《特殊钢》2006,27(6):13-14
通过Thermecmastor-Z热模拟实验机对Ti-IF(无间隙原子)钢(%:0.009C、0.017Si、0.13Mn、0.012P、0.013S、0.05Ti、0.025Als)在750℃、850℃和变形速率0.1,1,20s-1下进行单道次压缩变形实验。得出Ti-IF钢加工硬化率-应变曲线、动态再结晶状态图和动态再结晶体积分数方程。实验结果表明,对于无明显峰值应变的应力-应变曲线,采用加工硬化率方法确定峰值应变和稳态应变是一种有效的方法。  相似文献   

18.
B30MnSi钢的动态再结晶行为   总被引:4,自引:1,他引:3  
魏立群 《特殊钢》2005,26(4):13-15
采用Gleeble1500热模拟试验机对B30MnSi钢(%:0.32C,1.04Mn,0.85Si,0.019P,0.009S)进行变形温度为850~1000℃,应变速度为0.1~101/s的压缩变形试验,以研究该钢的动态再结晶规律。并通过回归分析得出峰值应力σm,应变εp,动态再结晶临界应变εc与温度补偿变形速率因子Z之间关系式为σm=16.689Ln(Z)-347.41;εp=0.0474Ln(Z)-1.1023;εc≈0.0393Ln(Z)-0.915。  相似文献   

19.
针对微合金化非调质钢热轧过程的变形特征,通过Gleeble-3800热模拟试验机研究了Nb-Ti-V非调质钢C38N2(/%:0.40C、0.52Si、1.42Mn、0.010P、0.047S、0.028V、0.025 Ti、0.022Nb)在950~1 150℃,变形速率0.1~10 s-1变形量60%,单道次压缩时的奥氏体动态再结晶过程,计算得出C38N2钢的动态再结晶晶粒尺寸模型和动态再结晶状态图。结果表明,C38N2钢变形温度越高,变形速率越低,则发生动态再结晶的储蓄能越小,动态再结晶越易发生。C38N2钢的动态再结晶激活能Qd=294.905 kJ/mol。  相似文献   

20.
含硼微合金钢动态再结晶模型的研究   总被引:3,自引:0,他引:3  
李立新  汪凌云 《特殊钢》2003,24(6):30-32
采用单道次压缩实验方法,在Gleeble 1500热模拟机上试验和测试了含硼微合金钢(0.05C,1.57Mn,0.5Cu,0.25Mo,0.05Nb,0.01Ti,0.0012B)在不同变形速率下1000℃和1100℃时应力—应变曲线和热加工应变量对该钢晶粒尺寸的影响。在实验数据的基础上建立了该含硼微合金钢的动态再结晶动力学模型和动态再结晶晶粒尺寸模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号