首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent upgrades to Brisbane City Council's Water Reclamation Plants (WRP) for improved nutrient removal has led to a significant increase in sludge production, and loss in potential anaerobic degradability. This increase in sludge production brought forth an economic driver for an improved, integrated biosolids handling strategy. The solution adopted by Brisbane Water, was a centralised thermal hydrolysis facility at Oxley Creek WRP to process the waste activated sludges generated at a total of five WRPs in the region. The thermal hydrolysis process uses high temperature and pressure to make non-degradable material more readily digestible by anaerobic bacteria and hence achieve greater efficiency in the overall anaerobic digestion process. Dewaterability is also improved, as the thermal hydrolysis process releases some of the bound water from the waste activated sludge. The viability of this solution is linked primarily to the reduction in mass and volume of biosolids which leads to lower transportation and disposal costs. After four months of operation, the Oxley Creek thermal hydrolysis plant has resulted in a 70% reduction in biosolids quantities (bulk volume) and disposal costs. The process is currently being optimised. Savings to date have reached about AUD 80,000 per month. Technical and operational issues which emerged during commissioning are also described.  相似文献   

2.
The excess biomass produced during biological treatment of municipal wastewater represents a major issue worldwide, as its disposal implies environmental, economic and social impacts. Therefore, there has been a growing interest in developing technologies to reduce sludge production. The main proposed strategies can be categorized according to the place inside the wastewater treatment plant (WWTP) where the reduction takes place. In particular, sludge minimization can be achieved in the wastewater line as well as in the sludge line. This paper presents the results of two pilot scale systems, to evaluate their feasibility for sludge reduction and to understand their effect on biomass activity: (1) a pilot plant with an ozone contactor in the return activated sludge (RAS) stream for the exposition of sludge to a low ozone dosage; and (2) an oxic-settling-anaerobic (OSA) process with high retention time in the anaerobic sludge holding tank have been studied. The results showed that both technologies enabled significant excess sludge reduction but produced a slight decrease of biomass respiratory activity.  相似文献   

3.
This paper describes a project to investigate the odour of sewage sludge after anaerobic digestion. The impact of air stripping on the odour of liquid sludge and on the quality of the dewatered product was evaluated at a full-scale sludge treatment installation. A continuous and a batch air-stripping mode were tested. Odour samples were collected during air stripping from the liquid sludge and from the biosolids surface during long term storage. The biosolids were also analysed for hedonic tone and for their potential odour expressed as an odour unit per unit mass. The odour emission profiles for continuous and batch air stripping demonstrated a reduction in the overall (time weighted) emissions during a 24 hr-period compared with emissions from the quiescent liquid storage tank. The averaged specific odour emission rate (Esp) of the biosolids derived from the continuous process was only 13% of the Esp of the biosolids derived from unaerated liquid sludge during the first month of storage. The results of the total potential odour and the hedonic tone of the biosolids underpin the beneficial effects of the air stripping. Odour dispersion modelling showed a noticeable reduction in overall odour impact from the sludge centre when air stripping was applied. The reduction was primarily associated with the reduced odour from stockpiled biosolids. The continuous air-stripping mode appeared to provide the greatest benefits in terms of odour impact from site operations.  相似文献   

4.
The pre-treatment of sludges by disintegration will result in a number of changes in sludge properties. Floc destruction as well as cell disintegration will occur. This leads to an increase of soluble substances and fine particles. Furthermore, biochemical reactions may appear during or immediately after disintegration. The influence of disintegration of excess sludge on anaerobic digestion was studied in full scale. A stirred ball mill, an ultrasound disintegrator, a lysate centrifuge and ozone treatment were used. The results of the degradation process were compared to a reference system without pre-treatment. An enhancement of the degree of degradation of 7.4% to 20% was observed. The pollution of sludge water as well as the dewatering properties of the digested sludge were investigated. COD and ammonia in the sludge water were increased and a higher polymer demand was observed while the solid content after dewatering stayed almost unchanged. Based on these results the cost effectiveness has been assessed taking into account different conditions (size of WWTP, cost for disposal, etc.). Capital and energy costs are the main factors while the decrease in disposal costs due to the reduced amount of sludge is the main profit factor.  相似文献   

5.
Understanding of the fate of oestrogen and oestrogenic compounds is important in improving the removal efficiency for oestrogens in wastewater treatment plants (WWTPs). In this study an attempt was made to clarify the fate of oestrogen, oestrogen sulphates, and oestrogenic compounds (synthetic oestrogen, nonylphenol and its relatives) by an instrumental analysis, and the fate of oestrogenicity by an in vitro assay. The investigation was conducted in an activated sludge WWTP in winter and summer, focusing on identification of the primary substances that induce oestrogenicity. Wastewater samples were analysed by employing the silica-gel fractionation technique in conjunction with two-step column chromatography. The results revealed that, in winter, the WWTP efficiencies for the removal of nitrogen and oestrogens decreased and the oestrone level increased with the progress of the treatment. Oestrone and oestrogenic substances are likely to circulate between the aeration tank and the final sedimentation tank. In summer, however, these compounds were effectively removed in the WWTP. The results of the column chromatography coupled with the bioassay suggested that E1 and E2 are the predominant contributors to the oestrogenicity in the influent, return sludge and effluent of the WWTP. The measurement by the instrumental analysis supported these findings.  相似文献   

6.
Removal efficiency of faecal coliforms and helminth eggs was evaluated in a small wastewater treatment plant (WWTP) serving a population of 1,000. This system was formed by the association in series of a UASB reactor and four submerged aerated biofilters. The density of faecal coliforms and the count of helminth eggs were estimated in the liquid and solid phases of the system. Two different methods of disinfecting sludge were investigated: (a) chemical treatment with lime and (b) a physical treatment by pasteurisation. As expected, the association UASB + BF was very efficient at removal of helminth eggs from the final tertiary effluent, but coliforms were still present at high densities. Lime treatment and pasteurisation of sludge were very effective methods of disinfection and produced a sludge safe for final disposal.  相似文献   

7.
The return flows of reject water from sewage sludge dewatering alter the activated sludge process in a conventional WWTP and increase TN concentration in the final effluent from WWTP. The objective of the investigation carried out was to consider the application of multistage treatment wetland (MTW) for the treatment of reject water from sewage sludge dewatering in a centrifuge (RWC). This paper aims to present the design and performance of each stage of the treatment as well as the efficiency of total MTW. The full scale pilot plant for RWC, consisting of two vertical flow beds (SS VF) working in series, followed by an horizontal flow bed (SS HF), was built in 2008. The applied configuration ensured a very high removal efficiency of principal pollutant (COD - 76.0% and NH4+-N - 93.6%). In the investigated facilities, the SS VF beds ensured an effective removal of nitrogen compounds, especially NH4+-N, whereas the decomposition of hardly degradable Org-N and COD took place in SS HF. This research illustrates that the MTW could be successfully applied for the treatment of RWC.  相似文献   

8.
Optimisation of nitrifying activated sludge plants towards nutrient removal (denitrification and enhanced P-removal) leads to a substantial reduction of operating costs and improves effluent and operating conditions. At WWTP Zürich-Werdh?elzli, initially designed for nitrification only, an anoxic zone of 28% of total activated sludge volume was installed and allowed 60% nitrogen elimination besides several other optimisations. In 2001 the operation of WWTP Zürich-Glatt was stopped and the wastewater was connected to WWTP Werdh?elzli. To improve nitrogen removal, WWTP Werdh?elzli co-financed two research projects; one for separate digester supernatant treatment with the anammox process operating two SBRs in series and the other applying NH4 sensors for aeration control in order to decrease energy consumption and raise effluent quality. The results of both projects and the consequences for WWTP Werdh?elzli are discussed in this paper.  相似文献   

9.
A novel anaerobic digestion process combined with partial ozonation on digested sludge was demonstrated for improving sludge digestion and biogas recovery by full-scale testing for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The novel process requires two essential modifications, which are ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Based on the performance, its energy demands and contribution for minimisation of greenhouse gas emission was evaluated throughout an entire study of sludge treatment and disposal schemes in a municipality for 130,000 p.e. The analysis indicated that the novel process with power generation from biogas would lead to minimal greenhouse gas emission because the extra energy production from the scheme was expected to cover all of the energy demand for the plant operation, and the remarkable reduction in dewatered sludge cake volumes makes it possible to reduce N2O discharge and consumption of fossil fuel in the subsequent sludge incineration processes.  相似文献   

10.
Among the technologies aimed at reducing sludge production, the combination of thermal treatment at 95 degrees C of sludge and the activated sludge process is a promising route. The feasibility of such a combined process is demonstrated (up to 60% sludge reduction) and the impacts of operating conditions on its efficiency are presented. Major emphasis was put on understanding the complex phenomena occurring within the thermal treatment: release and biodegradability of sludge organic matter, impact on the biological activity (decay, maintenance requirements, etc.). These effects were taken into account for the development of an ASM1-based model. Comparison between the modeling approach and experimental data (continuous and batch) showed that thermal treatment had three major issues partly explaining the reduction of sludge production: (i) a low release of organics; (ii) an immediate and reversible biological inactivation associated with additional maintenance energy requirements; and (iii) a potential inert production.  相似文献   

11.
The evolution of Czech standards requires higher efficiency of nutrient removal from municipal wastewaters. At the beginning of the last decade of 20th century, a new activated sludge configuration called R-AN-D-N process has been described, successfully tested and now largely used at several wastewater treatment plants (WWTP) in the Czech republic. The main feature of the R-AN-D-N process is the introduction of a regeneration zone in sludge recycle, which enables to increase sludge age in the system without any substantial increase in WWTP volume. Performances of three Czech large WWTP with R-AN-D-N configuration have been monitored and compared within a period of one and a half years. The results confirmed excellent nutrient removal efficiency for wastewaters with different proportion between sewage and industrial effluents. Two of three monitored WWTP received wastewaters from breweries (Budweiser and Pilsner Urquell). The settleability of activated sludge from all three WWTP was correct, with SVI values usually ranging from 50 to 150 ml/g. Monitoring of sludge composition indicated proliferation of several filamentous bacteria, particularly types 0581, 0092 and M. parvicella. No severe bulking events were observed. Finally, the operational costs expressed in CZK (Czech crown: 1 CZK = [see symbol in text]0.0322) per cubic metre of treated sewage or per capita amounts respectively from 2.24 to 6.52, and from 285 to 342.  相似文献   

12.
In this study, non-woven MBR was used to treat hydrolysed biosolids wasted from a biological treatment plant. The concentration of SS of hydrolysed biosolids in influent was 10,000 mg/L and the concentration of SS in effluent was less than 200 mg/L with/without discharging wasted sludge depending on different HRTs, i.e. 20, 15 and 10 d. The results indicated that the percentage of biosolids reduction in terms of SS removal efficiency in non-woven MBR was around 65, 60 and 35%, respectively, depending on different HRTs. Meanwhile, the ratio of VSS/SS was decreased from 0.78 to 0.50 and the number of smaller inorganic particle sizes increased due to extended SRT. The initial flux in the non-woven MBR was set at 0.02, 0.04 and 0.06 m3/m2/day and trans-membrane pressure (TMP) was less than 10 kPa. The permeate flux could be maintained quite stably due to lower TMP. The proposed non-woven MBR could be used to achieve the reduction of biosolids in the wastewater treatment plant.  相似文献   

13.
Sludge management arises as a relevant problem after being accumulated in primary ponds of septage treatment plants. One of the most attractive options for sludge disposal is its use in agriculture and then specific guidelines regarding hygienic quality must be fulfilled. This study aimed at evaluating the storage time needed to inactivate Ascaris eggs and Salmonella in sludge accumulated in a primary pond treating septage. Raw septage exhibited very low concentrations of viable Ascaris eggs, thus experiments with Ascaris suum eggs spiking were conducted. The concentration of Ascaris eggs in the solids accumulated at the bottom of the pond was 20 eggs/g of total solids (g TS) at the time of pond closure. Although it decreased, some eggs remained viable (0.59 mean viable eggs/g TS) up to 20 months of in-pond storage of the biosolids. Salmonella survival was studied after developing an analytical method that inhibited the native flora. Sludge was seeded with Salmonella enteritidis. An equation adequately describing Salmonella die-off in biosolids subjected to 115 days of in-pond storage/dewatering, was found to be represented by the regression: y = log MPN Salmonella/g TS = 6.67 x t(-0.086), with t = storage time elapsed in days. The initial concentration was 7.0 x 10(6) MPN/g TS and the removal efficiency was 99%.  相似文献   

14.
A new biological nutrient removal process, anaerobic-oxic-anoxic (A/O/A) system using denitrifying polyphosphate-accumulating organisms (DNPAOs), was proposed. To attain excess sludge reduction and phosphorus recovery, the A/O/A system equipped with ozonation tank and phosphorus adsorption column was operated for 92 days, and water quality of the effluent, sludge reduction efficiency, and phosphorus recovery efficiency were evaluated. As a result, TOC, T-N and T-P removal efficiency were 85%, 70% and 85%, respectively, throughout the operating period. These slightly lower removal efficiencies than conventional anaerobic-anoxic-oxic (A/A/O) processes were due to the unexpected microbial population in this system where DNPAOs were not the dominant group but normal polyphosphate-accumulating organisms (PAOs) that could not utilize nitrate and nitrite as electron acceptor became dominant. However, it was successfully demonstrated that 34-127% of sludge reduction and around 80% of phosphorus recovery were attained. In conclusion, the A/O/A system equipped with ozonation and phosphorus adsorption systems is useful as a new advanced wastewater treatment plant (WWTP) to resolve the problems of increasing excess sludge and depleted phosphorus.  相似文献   

15.
The two-staged WWTP 'Gut Grosslappen' has a capacity of 2 mio. PE. It comprises a pre-denitrification in the first stage using recirculation from the nitrifying second stage. A residual post-denitrification in a downstream sand filter is required in order to achieve the effluent standards. Presently the process water from sludge digestion is treated separately by nitrification/denitrification. Due to necessary reconstruction of the biological stages, the process water treatment was included in the future overall process concept of the WWTP. A case study was conducted comparing the processes nitritation/denitrititation and deammonification with nitrification/denitrification including their effect on the operational costs of the planned main flow treatment. Besides the different operating costs the investment costs required for the process water treatment played a significant role. Six cases for the process water treatment were compared. As a result, in Munich deammonification can only be recommended for long-term future developments, due to the high investment costs, compared with the nitritation/denitritation alternative realizable in existing tanks. The savings concerning aeration, sludge disposal and chemicals were not sufficient to compensate for the additional investment costs. Due to the specific circumstances in Munich, for the time being the use of existing tanks for nitritation/denitritation proved to be most economical.  相似文献   

16.
New stricter nitrogen effluent standards and increasing influent loads require existing wastewater treatment plans (WWTPs) to extend or optimize. At WWTPs with limited aeration capacity, limited denitrification capacity or shortage of aerobic sludge age, implementation of SHARON to improve nitrogen effluent quality can be a solution. SHARON is a compact, sustainable and cost-effective biological process for treatment of nitrogen-rich rejection waters. At WWTP Rotterdam-Dokhaven and WWTP Utrecht a SHARON has been in operation for several years. For both WWTPs the effect of SHARON on the nitrogen effluent quality has been evaluated. WWTP Rotterdam-Dokhaven has limited aeration capacity. By implementation of SHARON, the ammonia load of the effluent was reduced by 50%. WWTP Utrecht had limited denitrification capacity. The implementation of SHARON improved the effluent nitrate load by 40%. The overall TN removal efficiency increased from 65% to over 75% and strict nitrogen effluents standards (TN = 10 mg N/l) could be reached. Through modelling and supported by full scale practice it has been shown that by implementation of SHARON in combination with enhanced influent pre-treatment, the aerobic sludge age can be extended to maintain total nitrogen removal at lower temperatures.  相似文献   

17.
Sludge as source of energy and revenue.   总被引:1,自引:0,他引:1  
Sludge is a residue/product from wastewater treatment plants and contains most of the contaminants released during human activities. Some stringent environmental regulations on sludge treatment and disposal exist in many countries. This has resulted in increasing interest in sludge treatment methods that encourage sludge reduction and improvement in biogas production during anaerobic digestion processes. This work demonstrates the first exploitation of valuable energy from homogenised sludge at technical scale with mass reduction. The optimal combination of sludge homogenisation at relatively low pressures using a modified high-pressure homogeniser led to the success of this unique project. Results showed that about 30% more energy could be obtained from thickened and disrupted sludge than from untreated samples. The energy produced was higher than that invested during disruption and digestion processes. About 23% sludge reduction was also observed with no increase in chemical oxygen demand. This new process can produce extra energy for local electrification and heating the digester while the sludge reduction provides economic benefits. Concentration of sludge causes reduction in investment cost on digester as well as reduction in operational time for sludge dewatering.  相似文献   

18.
The principal objective of our study was to optimise a municipal activated sludge wastewater treatment plant (WWTP) to face high organic flows due to viticulture effluents inputs. Treatment file optimization consisted in testing different treatment lines, changing the number and volume of biological basins and clarifiers, with or without a buffer basin upstream, with a view to achieving a better reduction of COD. The actual WWTP biological stage is composed of two aerated basins whose total volume is 1365 m3. The studied cases are successively, the installation of a single basin of 1365 m3, then of several basins whose total volume remains constant and equal to 1365 m3. Another case was also considered, that of an aerated basin followed by a first clarifier and then, by another aerated basin and a second clarifier. All scenarios presented below were evaluated, for standard dry weather conditions and for high organic load conditions, as encountered during the grape harvest period. The method used was to carry out various simulations, using numerical modelling, and to compare the impact of different process line scenarios and management strategies on the activated sludge WWTP efficiencies.  相似文献   

19.
This paper developes the WWTP operation decision support system (ODSS) to simulate the dynamic behavior of the WWTP treatment process based on ASMs (activated sludge models) and WWTP experiential knowledge. The novel structure and functions of ODSS can offer more flexible and general instructions to the WWTP operations. The three independent sub-systems, namely expert system, simulation system and training system, can cooperate to achieve many more functions such as operation alert, fault diagnosis, process simulation and so forth. The expert system based on the dynamic simulation, an essential part of WWTP ODSS, has been proved to be feasible and effective by the implementation at Fang Zhuang WWTP. Our results indicated that the WWTP ODSS has significant potential for improving plant performance and reducing treatment costs by assisting the operators at the decision-making level.  相似文献   

20.
In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号