首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

2.
We study the magnetic field vs. temperature (HT) and pressure vs. temperature (PT) phase diagrams of the T c ≈ 5.5 K superconducting phase in Pd x Bi2Te3 (x ≈ 1) using electrical resistivity versus temperature measurements at various applied magnetic fields (H) and magnetic susceptibility versus temperature measurements at various applied magnetic fields (H) and pressure (P). The HT phase diagram has an initial upward curvature as observed in some unconventional superconductors. The critical field extrapolated to T = 0 K is H c (0) ≈ 6–10 kOe. The T c is suppressed approximately linearly with pressure at a rate d T c /d P ≈ ?0.28 K/GPa.  相似文献   

3.
Tb2Sn2O7 has been prepared by solid-state reaction in air at 1473 K over a period of 200 h and its isobaric heat capacity has been studied experimentally in the range 350–1073 K. The C p(T) data for this compound have no extrema and are well represented by the classic Maier–Kelley equation. The experimental C p(T) data have been used to evaluate the thermodynamic properties of terbium stannate (pyrochlore structure): enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(Т).  相似文献   

4.
Gd2Sn2O7 gadolinium stannate with the pyrochlore structure has been prepared by solid-state reaction and its high-temperature heat capacity has been determined by differential scanning calorimetry in the temperature range 350–1020 K. The Cp(T) data are shown to be well represented by the classic Maier–Kelley equation. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of gadolinium stannate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т).  相似文献   

5.
We report bulk superconductivity at 2.5 K in LaO0.5F0.5BiSe2 compound through the DC magnetic susceptibility and electrical resistivity measurements. The synthesized LaO0.5F0.5BiSe2 compound is crystallized in tetragonal structure with space group P4/nmm and Reitveld refined lattice parameters are a = 4.15(1) Å and c = 14.02(2) Å. The lower critical field of H c1 = 40 Oe, at temperature 2 K is estimated through the low field magnetization measurements. The LaO0.5F0.5BiSe2 compound showed metallic normal state electrical resistivity with residual resistivity value of 1.35 m Ω cm. The compound is a type-II superconductor, and the estimated H c2(0) value obtained by WHH formula is above 20 kOe for 90 % ρ n criteria. The superconducting transition temperature decreases with applied pressure till around 1.68 GPa and with further higher pressures a high- T c phase emerges with possible onset T c of above 5 K for 2.5 GPa.  相似文献   

6.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

7.
The Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates have been prepared by solid-state reactions in several sequential firing steps in the temperature range 1237–1473 K using stoichiometric mixtures of Dy2O3 (or Ho2O3) and GeO2. The heat capacity of the synthesized germanates has been determined as a function of temperature by differential scanning calorimetry in the range 350–1000 K. The experimentally determined C p (T) curves of the dysprosium and holmium germanates have no anomalies and are well represented by the Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of the Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates: enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(T).  相似文献   

8.
The discovery of superconductivity at 203 K in highly compressed sulphur hydride validates the ideas put forward by Ashcroft 50 years ago and galvanises the quest for room-temperature superconductivity. But at such temperatures, thermal fluctuations might be expected to break up Cooper pairs. For example, in the cuprates, fluctuations reduce T c by 30% or more below the mean-field value. Similar effects are found in iron pnictides. Here, we ask: how does superconductivity survive in sulphur hydride at such high temperatures? To answer this, we examine the superfluid density which is the key parameter for quantifying fluctuations in both amplitude and phase. We show that dimensionality plays a key role in suppressing or enhancing thermal fluctuations to the benefit of hydrogen sulphide and the detriment of its more layered 2D competitors. We find that the temperature scale for phase fluctuations, T φ , in superconducting H3S exceeds 1200 K, and therefore, these are irrelevant at 200 K. But the amplitude fluctuation temperature scale, T amp, at around 300 K is much lower and this has important implications for the ongoing quest for room temperature superconductivity. Appealing to the way in which superfluid density, T φ , T amp and T c scale with each other it seems that room temperature superconductivity is nearly ruled out, but perhaps not quite. It will require 3D systems with a large Fermi velocity to achieve this goal.  相似文献   

9.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

10.
The calorimetric method is used to investigate the heat capacity of DyMeIICr2O5.5(MeII-Mg, Ca) chromites in the range from 298.15 to 673 K. The C p 0 f(T) curves exhibit λ-like effects at 348 and 548 K for DyMgCr2O5.5 and at 473 K for DyCaCr2O5.5, which apparently relate to second-order phase transitions. The temperature dependences are calculated for thermodynamic functions C p 0 (T), H 0(T)-H 0(298.15), S 0(T), and Φ**(T).  相似文献   

11.
Layered α-form ZrNX (X: Cl and Br) compounds with high quality were prepared by chemical vapor transport. The intercalation of alkali metal A (A: Li, Na, K, Rb) was carried out to realize electron doping into the orthogonal [Zr2N2] layers. The Rietveld refinement analysis reveals that the [Zr2N2] crystalline layers in the intercalation compounds shift mutually in the ab plane when compared with the hosts. Magnetic measurements show that the intercalation compounds A x ZrNX are changed into superconductors with transition temperature T c of up to 12 K. Upon the cointercalation of solvent molecules such as THF, T c decreases to as low as 6.1 K with increasing the interlayer spacing d up to 14 Å, which is similar to the d dependence of T c recently found in electron-doped α-form TiNX series. We also succeeded in synthesizing another new polymorph of α-Zr2N2S by the topochemical reaction between α-form ZrNX and Na2S. α-Zr2N2S (space group: Immm, a = 4.1375(1) Å, b = 3.5422(1) Å, and c = 11.5204(3) Å) has the same α-[Zr2N2] layers, whereas the interlayer spacing between two adjacent [Zr2N2] layers is effectively decreased by 1/3 when compared with the parent compounds of ZrNX.  相似文献   

12.
Through the measurement of resistivity, magnetic susceptibility, and Hall effect, we discovered a novel BiSe2-based superconductor Ca0.5La0.5FBiSe2 with T c of 3.9 K. A strong diamagnetic signal below T c in susceptibility χ(T) is observed indicating the bulk superconductivity. The negative Hall coefficient throughout the whole temperature regime implies the dominant electron-type carriers in the sample. Different to most of BiS2-based compounds where superconductivity develops from a semiconducting-like normal state, its resistivity in the present compound exhibits a metallic behavior down to T c . Together with the enhanced T c , the metallic character of the normal state implies that the electronic structure of Ca0.5La0.5FBiSe2 may be different to those in the other BiS2-based compounds.  相似文献   

13.
Interaction of hydrogen with the intermetallic compound Nd2Fe17 has been studied for the first time by calorimetry using a differential heat conduction calorimeter coupled to a Sieverts apparatus. Hydrogen absorption and desorption reactions were run at 200°C, and two types of data were obtained: p–C–T and ΔH–C–T (where p is the equilibrium hydrogen pressure, C = H/Nd2Fe17, ΔH is the reaction enthalpy, and T is the measurement temperature). The p–C–T curves obtained for the hydrogen absorption and desorption processes have no plateau or two-phase region, in contrast to what is characteristic of the formation of a hydride phase. At the same time, the ΔH(C) curves have a few portions where the enthalpy of reaction between hydrogen and the intermetallic compound remains constant: 0 < C < 2.0, with ΔH abs =–85.05 ± 0.65 kJ/mol H 2; 2.0 < C < 2.7, with ΔH abs =–80.64 ± 1.00 kJ/mol H2; and 1.9 < C < 2.7, with ΔH des = 76.48 ± 0.85 kJ/mol H2. The data obtained in this study suggest that positions 9e and 18g in the intermetallic compound are occupied by hydrogen in a particular order.  相似文献   

14.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

15.
In the present report, we investigate various properties of the Nb2PdS5 superconductor. Scanning electron microscopy displayed slabs like laminar growth of Nb2PdS5 while X-ray photoelectron spectroscopy exhibited the hybridisation of sulphur (2p) with both palladium (3d) and niobium (3d). High-field (140 kOe) magneto-transport measurements revealed that superconductivity (\(T_{c}^{\text {onset}} =?7\) K and T cρ=?0 = 6.2 K) of the studied Nb2PdS5 material is quite robust against magnetic field with the upper critical field (H c2) outside the Pauli paramagnetic limit. Thermally activated flux flow (TAFF) of the compound showed that resistivity curves follow Arrhenius behaviour. The activation energy for Nb2PdS5 is found to decrease from 15.15 meV at 10 kOe to 2.35 meV at 140 kOe. Seemingly, the single vortex pinning is dominant in low-field regions, while collective pinning is dominant in high-field region. The temperature dependence of AC susceptibility confirmed the T c at 6 K, further varying amplitude and frequency, showed well-coupled granular nature of superconductivity. The lower critical field (H c1) is extracted from DC magnetisation measurements at various T below T c. It is found that H c1(T) of Nb2PdS5 material seemingly follows the multiband nature of superconductivity.  相似文献   

16.
Enhancing the critical temperature (T C ) is important not only to widen the practical applications but also to expand the theories of superconductivity. Inspired by the meta-material structure, we designed a smart meta-superconductor consisting of MgB2 microparticles and Y2O3/Eu3+ nanorods. In the local electric field, Y2O3/Eu3+ nanorods generate an electroluminescence (EL) that can excite MgB2 particles, thereby improving the T C by strengthening the electron–phonon interaction. An MgB2-based superconductor doped with one of four dopants of different EL intensities was prepared by an ex situ process. Results showed that the T C of MgB2 doped with 2 wt% Y2O3, which is not an EL material, is 33.1 K. However, replacing Y2O3 with Y2O3/Eu3+II, which displays a strong EL intensity, can improve the T C by 2.8 to 35.9 K, which is even higher than that of pure MgB2. The significant increment in T C results from the EL exciting effect. Apart from EL intensity, the micromorphology and degree of dispersion of the dopants also affected the T C . This smart meta-superconductor provides a new method to increase T C .  相似文献   

17.
We have studied the 77-K photoluminescent properties of As2S3 semiconducting glass prepared at different temperatures (T 1 = 870 K; T 2 = 1120 K; T 3 = 1370 K) and cooling rates (v 1 = 10?2 K/s, v 2 = 1.5 K/s, v 3 = 1.5 × 102 K/s). The results demonstrate that the structural, optical, and photoluminescent properties of semiconducting chalcogenide glasses can be tuned over a considerable range by varying the preparation conditions.  相似文献   

18.
A bulk polycrystalline sample with the nominal compositions represented by V2AlN1?δ was synthesized by a two-step solid-state reaction. The structural characterization has been done via X-ray diffraction, followed by Rietveld refinements, which revealed that the layered V2AlN is crystalized in cubic Fm3m space group with lattice parameters a = b = c = 6.127 Å. Both DC resistivity and magnetization measurements confirmed that V2AlN is a bulk superconductor with superconducting transition temperature (T c ) of 15.9 K.  相似文献   

19.
The polytypes of monoclinic TlInS2 (c ~ 15, 60, 120 Å) and triclinic TlInS2 (c ~ 30 Å) were prepared. The positions of edge excitons and the band gaps were determined by the optical and photoelectric measurements. It was found that the maxima in the temperature dependences of dielectric constants of pure polytypes are situated at different temperatures. The photoconductivity spectra and the capacitive measurements showed that pure polytypes are unstable and transform with time into a mixture of the monoclinic polytypes of TlInS2. It is also established that all polytypes of monoclinic crystals tend to transform to the triclinic system.  相似文献   

20.
In this letter, we report on the growth and characterization of bulk Bi 2Se 3 single crystals. The studied Bi 2Se 3 crystals are grown by the self-flux method through the solid-state reaction from high-temperature (950 °C) melt of constituent elements and slow cooling (2 ℃/h). The resultant crystals are shiny and grown in the [00l] direction, as evidenced from surface XRD. Detailed Reitveld analysis of powder X-ray diffraction (PXRD) of the crystals showed that these are crystallized in the rhombohedral crystal structure with a space group of R3m (D5), and the lattice parameters are a = 4.14 (2), b = 4.14 (2), and c = 28.7010 (7) Å. Temperature versus resistivity (ρ?T) plots revealed metallic conduction down to 2 K, with typical room temperature resistivity (ρ 300 K) of around 0.53 m Ω-cm and residual resistivity (ρ 0 K) of 0.12 m Ω-cm. Resistivity under magnetic field [ ρ(T)H] measurements exhibited large + ve magneto-resistance right from 2 to 200 K. Isothermal magneto-resistance [ ρH] measurements at 2, 100, and 200 K exhibited magneto-resistance (MR) of up to 240 %, 130 %, and 60 %, respectively, at 14 T. Further, the MR plots are nonsaturating and linear with the field at all temperatures. At 2 K, the MR plots showed clear quantum oscillations at above say 10 T applied field. Also, the Kohler plots, i.e., Δρ/ ρ oversus B/ ρ, were seen consolidating on one plot. Interestingly, the studied Bi 2Se 3 single crystal exhibited the Shubnikov-de Haas (SdH) oscillations at 2 K under different applied magnetic fields ranging from 4 to 14 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号