首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The macroscopic coaxial carbon cylinders (dia. ∼0.5 cm with varying lengths, ∼ 7–10 cm) consisting of aligned carbon nanotube (CNT) stacks have been prepared by controlled spray pyrolysis method. The coaxial carbon cylinders of CNT stacks have been formed directly inside the quartz tube. Another study is done on multi-walled CNTs (MWNTs)-polymer (e.g. polyethylene oxide (PEO), polyacrylamide (PAM)) composite films. We have investigated the structural, electrical and mechanical properties of MWNTs-PEO composites. Composites with different wt% (between 0 and 50 wt% of MWNTs) have been prepared and characterized by the scanning electron microscopic technique. Enhanced electrical conductivity and mechanical strength were observed for the MWNTs-PEO composites. We have also studied the electrical property of MWNTs-PAM composite films.  相似文献   

2.
Zhao Y  Hu Y  Li Y  Zhang H  Zhang S  Qu L  Shi G  Dai L 《Nanotechnology》2010,21(50):505702
5?mm long aligned titanium oxide/carbon nanotube (TiO(2)/CNT) coaxial nanowire arrays have been prepared by electrochemically coating the constituent CNTs with a uniform layer of highly crystalline anatase TiO(2) nanoparticles. While the presence of the TiO(2) coating was confirmed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and x-ray diffraction, the resultant TiO(2)/CNT coaxial arrays were demonstrated to exhibit minimized recombination of photoinduced electron-hole pairs and fast electron transfer from the long TiO(2)/CNT arrays to external circuits. This, in conjunction with the aligned macrostructure, facilitates the fabrication of TiO(2)/CNT arrays for various device applications, ranging from photodetectors to photocatalytic systems. Thus, the millimeter long TiO(2)/CNT arrays represent a significant advance in the development of new macroscopic photoelectronic nanomaterials attractive for a variety of device applications beyond those demonstrated in this study.  相似文献   

3.
This paper proposes the correlation between the electrokinetic potential, dispersibility in solvents, surface energy and oxygen content of carbon nanotubes (CNTs) affected by functionalization. Colloidal systems consisting of CNTs with varying degrees of dispersion are prepared and characterized to evaluate CNT dispersibility and suspension stability in solvents with different polarities. The results show that an absolute value of zeta potential at about 25 mV is closely related to the micro- and macroscopic dispersion of CNTs, whereas a high absolute value of 40 mV is regarded as an indication of high quality CNT dispersion with much enhanced suspension stability in solvents. The absolute zeta potential value increases consistently with increasing degree of CNT functionality, the increase being most pronounced in a hydrophilic liquid such as water. A linear correlation is established between the surface energy of a CNT film and the oxygen to carbon ratio of CNT surface. The CNT dispersibility in a liquid is determined not only by their physical states, but also by the hydrophilicity and surface functionality of CNTs, all of which are reflected by zeta potential.  相似文献   

4.
Wang D  Song P  Liu C  Wu W  Fan S 《Nanotechnology》2008,19(7):075609
Paper-like carbon nanotube (CNT) materials have many important applications such as in catalysts, in filtration, actuators, capacitor or battery electrodes, and so on. Up to now, the most popular way of preparing buckypapers has involved the procedures of dispersion and filtration of a suspension of CNTs. In this work, we present a simple and effective macroscopic manipulation of aligned CNT arrays called 'domino pushing' in the preparation of the aligned thick buckypapers with large areas. This simple method can efficiently ensure that most of the CNTs are well aligned tightly in the buckypaper. The initial measurements indicate that these buckypapers have better performance on thermal and electrical conductance. These buckypapers with controllable structure also have many potential applications, including supercapacitor electrodes.  相似文献   

5.
As classical 1D nanoscale structures, carbon nanotubes (CNTs) possess remarkable mechanical, electrical, thermal, and optical properties. In the past several years, considerable attention has been paid to the use of CNTs as building blocks for novel high-performance materials. In this way, the production of macroscopic architectures based on assembled CNTs with controlled orientation and configurations is an important step towards their application. So far, various forms of macroscale CNT assemblies have been produced, such as 1D CNT fibers, 2D CNT films/sheets, and 3D aligned CNT arrays or foams. These macroarchitectures, depending on the manner in which they are assembled, display a variety of fascinating features that cannot be achieved using conventional materials. This review provides an overview of various macroscopic CNT assemblies, with a focus on their preparation and mechanical properties as well as their potential applications in practical fields.  相似文献   

6.
Yang Z  Chen X  Nie H  Zhang K  Li W  Yi B  Xu L 《Nanotechnology》2008,19(8):085606
A mass of ultralong aligned carbon nanotube (CNT) bundles up to about 8?mm in length was synthesized by utilizing the spray pyrolysis of ferrocene/xylene solutions in the absence of promoters, such as thiophene or pure sulfur, and etching agents, such as plasma, oxygen, ethanol or water. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) results indicated the continuous and multi-walled nanotube structure for the CNTs in the macroscopical bundles. A graph demonstrating the correlation between growth time and length of CNT arrays revealed that the maximum growth rate reaches approximately 4612?nm?s(-1). Based on the experimental phenomena and results, a continuous rapid growth mechanism in both directions was proposed, which suggests that longer CNT arrays can be synthesized at this rapid growth rate if the growth time is extended.  相似文献   

7.
Zhu L  Xiu Y  Hess DW  Wong CP 《Nano letters》2005,5(12):2641-2645
Well-aligned, high-purity carbon nanotube (CNT) stacks of up to 10 layers fabricated in one batch process have been formed by water-assisted selective etching of carbon atoms. Etching takes place at the CNT caps as well as at the interface between CNTs and metal catalyst particles. This simple process generates high-purity CNTs and opens the CNT ends by removing the nanotube caps. High-resolution transmission electron microscopy indicates that the process does not damage CNT wall structures. A mechanism for stacked growth of CNT layers is proposed.  相似文献   

8.
Cryomilled multiwall carbon nanotube (MWCNT) reinforced chitosan nanocomposites having improved conductivity have been prepared by solution casting method. The MWCNTs were crushed to smaller particles via cryomilling, which was effective in cleaving the nanotubes regularly as well as in reducing the entanglements and agglomeration. The cryomilled CNTs were chemically oxidized by acid and base methods, where basic oxidation generated high graphitic structure. The cryomilled and oxidized CNTs were characterized by XRD, Raman spectroscopy, FTIR and SEM. The conductivity of the nanocomposites was improved by cryomilling and it was further improved by chemical oxidation. Base oxidized cryomilled CNT/chitosan nanocomposites showed large improvement in conductivity compared to all other nanocomposites having 1 wt.% CNT content. Thermal stability and tensile properties of the CNT/chitosan nanocomposites also have been improved significantly by the incorporation of acid and base oxidized cryomilled CNTs. SEM picture of the fractured surface and FTIR showed nano-level dispersion of the functionalized CNTs and good chemical interaction between chitosan and CNTs respectively.  相似文献   

9.
Conventional micro-fiber-reinforced composites provide insight into critical structural features needed for obtaining maximum composite strength and stiffness: the reinforcements should be long, well aligned in a unidirectional orientation, and should have a high reinforcement volume fraction. It has long been a challenge for researchers to process CNT composites with such structural features. Here we report a method to quickly produce macroscopic CNT composites with a high volume fraction of millimeter long, well aligned CNTs. Specifically, we use the novel method, shear pressing, to process tall, vertically aligned CNT arrays into dense aligned CNT preforms, which are subsequently processed into composites. Alignment was confirmed through SEM analysis while a CNT volume fraction in the composites was calculated to be 27%, based on thermogravimetric analysis data. Tensile testing of the preforms and composites showed promising mechanical properties with tensile strengths reaching 400 MPa.  相似文献   

10.
采用化学气相沉积法,选用不同基底和表面涂层合成了碳纳米管垂直阵列薄膜、管束和条带三种碳纳米管宏观结构,并用扫描电镜(SEM)和透射电镜(TEM)进行了表征。结果表明:在石英涂层上合成的定向碳纳米管薄膜厚度达毫米级;在表面有Al2O3涂层的不锈钢基底上可合成碳纳米管垂直阵列薄膜和不同尺寸宏观管束结构;在表面有SiO2涂层...  相似文献   

11.
This paper presents direct growth of horizontally-aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). Using the conventional photolithography technique followed by thin film evaporation and lift off, the catalytic electrodes (pads) were prepared, consisting of Pt, Al and Fe triple layers on SiO2/Si substrate. The grown CNTs were horizontally-aligned across the catalytic electrodes on the modified gold image furnace hot stage (thermal CVD) at 800 degrees C by using an alcohol vapor as the carbon source. Scanning and transmission electron microcopies (SEM/TEM) were used to observe the structure, growth direction and density of CNTs, while Raman spectrum analysis was used to indicate the degree of amorphous impurity and diameter of CNTs. Both single- and multi-wall CNTs with diameters of 1.1-2.2 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. Following horizontally-aligned growth of CNTs, the electrical properties of back-gate CNT-FETs were measured and showd p-type conduction behaviors of FET.  相似文献   

12.
Highly aligned carbon nanotube/polystyrene (HACNT/PS) composites were prepared conveniently via polymer impregnation of aligned arrays, avoiding conventional solution or melt processes that involve high-shear blending. Detailed scanning electron microscopy (SEM), X-Ray diffraction (XRD) and differential scanning calorimetry (DSC) studies show that the alignment of the multi-wall nanotubes is retained after polymer impregnation. A range of key parameters were investigated, including the amount of molten polymer required for complete infiltration, the maximum mass fraction of CNTs in dense composites, and the effect of CNTs on the glass transition temperature (Tg) of the polymer. This approach may be adapted to the fabrication of large scale, highly anisotropic, thin or multilayer CNT composites using other molten polymers.  相似文献   

13.
In the present study, we report a systematic study of doping/admixing of carbon nanotubes (CNTs) in different concentrations in MgB2. The composite material corresponding to MgB2-x at.% CNTs (35 at.% > or = x > or = 0 at.%) have been prepared by solid-state reaction at ambient pressure. All the samples in the present investigation have been subjected to structural/microstructural characterization employing XRD, Scanning electron microscopic (SEM), and Transmission electron microscopic (TEM) techniques. The magnetization measurements were performed by Physical property measurement system (PPMS) and electrical transport measurements have been done by the four-probe technique. The microstructural investigations reveal the formation of MgB2-carbon nanotube composites. A CNT connecting the MgB2 grains may enhance critical current density due to its size (approximately 5-20 nm diameter) compatible with coherence length of MgB2 (approximately 5-6 nm) and ballistic transport current carrying capability along the tube axis. The transport critical current density (Jct) of MgB2 samples with varying CNTs concentration have been found to vary significantly e.g., Jct of the MgB2 sample with 10 at.% CNT addition is approximately 2.3 x 10(3) A/cm2 and its value for MgB2 sample without CNT addition is approximately 7.2 x 102 A/cm2 at 20 K. In order to study the flux pinning effect of CNTs doping/ admixing in MgB2, the evaluation of intragrain critical current density (JJ) has been carried out through magnetic measurements on the fine powdered version of the as synthesized samples. The optimum result on Jc is obtained for 10 at.% CNTs admixed MgB2 sample at 5 K, the Jc reaches approximately 5.2 x 10(6) A/cm2 in self field, -1.6 x 10(6) A/cm2 at 1 T, approximately 2.9 x 10(5) A/cm2 at 2.6 T, and approximately 3.9 x 10(4) A/cm2 at 4 T. The high value of intragrain Jc in 10 at.% CNTs admixed MgB2 superconductor has been attributed to the incorporation of CNTs into the crystal matrix of MgB2, which are capable of providing effective flux pinning centres. A feasible correlation between microstructural features and superconducting properties has been put forward.  相似文献   

14.
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.  相似文献   

15.
A simple process to spin fibers consisting of multi-walled carbon nanotubes (CNTs) directly from their lyotropic liquid-crystalline phase is reported. Ethylene glycol is used as the lyotropic solvent, enabling a wider range of CNT types to be spun than previously. Fibers spun with CNTs and nitrogen-doped CNTs are compared. X-ray analysis reveals that nitrogen-doped CNTs have a misalignment of only +/-7.8 degrees to the fiber axis. The tensile strength of the CNT and nitrogen-doped CNT fibers is comparable but the modulus and electrical conductivity of the are lower. The electrical conductivity of both types of CNT fibers is found to be highly anisotropic. The results are discussed in context of the microstructure of the CNTs and fibers.  相似文献   

16.
Li X  Zhang X  Ci L  Shah R  Wolfe C  Kar S  Talapatra S  Ajayan PM 《Nanotechnology》2008,19(45):455609
We report an air-assisted chemical vapor deposition (CVD) method for the synthesis of super-long carbon nanotube (CNT) bundles. By mixing a small amount of air in the vapor phase catalyst CVD process, the catalyst lifetime can be dramatically increased, and extremely long dense and aligned CNT bundles up to 1.5?cm can be achieved. Electron microscopy characterization shows that the injection of air does not damage the CNT structures. Further, we have estimated that individual ultra-long CNTs can carry moderate current densities ~10(5)?A?cm(-2), indicating their possible use in nanoelectronic devices.  相似文献   

17.
Fabrication of liquid crystalline (LC) nanomaterials in an aligned pattern along the multiwalled carbon nanotubes (CNT) has been reported here. The nanocomposite was prepared by sonicating esterified CNTs and the ferroelectric liquid crystal (FLC) in chloroform. The nanohybrid shish kebab (NHSK) like pattern was observed in SEM analysis. The nanocomposite materials were characterized by Fourier transform infrared spectroscopy (FTIR), polarizing optical microscopy and electron microscopy. The DC and AC electrical properties of the composite materials were investigated. The DC conductivity of the nanocomposite increased by 2 order from the FLC materials and AC relaxation has been observed, in the nanocomposite, which was totally absent in the FLC materials.  相似文献   

18.
Arrays of aligned carbon nanotubes (CNTs) have been proposed for different applications, including electrochemical energy storage and shock-absorbing materials. Understanding their mechanical response, in relation to their structural characteristics, is important for tailoring the synthesis method to the different operational conditions of the material. In this paper, we grow vertically aligned CNT arrays using a thermal chemical vapor deposition system, and we study the effects of precursor flow on the structural and mechanical properties of the CNT arrays. We show that the CNT growth process is inhomogeneous along the direction of the precursor flow, resulting in varying bulk density at different points on the growth substrate. We also study the effects of non-covalent functionalization of the CNTs after growth, using surfactant and nanoparticles, to vary the effective bulk density and structural arrangement of the arrays. We find that the stiffness and peak stress of the materials increase approximately linearly with increasing bulk density.  相似文献   

19.
Zhu Y  Lim X  Sim MC  Lim CT  Sow CH 《Nanotechnology》2008,19(32):325304
A simple technique to transfer aligned multi-walled carbon nanotubes (MWCNTs) is demonstrated in this work. With polydimethylsiloxane (PDMS) as the transfer medium, as-grown or patterned MWCNT arrays are directly transferred onto a wide variety of Pt-coated substrates such as glossy paper, cloth, polymers, glass slides, and metal foils at low temperatures. The surface of the transferred CNTs is cleaner with better alignment, compared with the as-grown one. Furthermore, the transferred CNTs show strong adhesion and good electric contact with the target substrates. A maximal current density of ~10(4)?A?cm(-2) has been achieved from the CNT interconnects prepared with this technique. Because of the lower density and open-ended structures, improved field emission performance has been obtained from CNTs transferred on polymers, based on which flexible emitter devices can be fabricated. In addition, the surface of transferred CNTs becomes more hydrophilic, with an averaged contact angle of 93.4 ± 5.8°, in contrast to the super-hydrophobic as-grown CNT surface (contact angle 151.6 ± 5.5°). With versatile properties and flexible applications, the technique provides a simple and cost-effective way towards future nanodevices based on CNTs.  相似文献   

20.
Al2O3 ceramic reinforced with 4-wt% multiwalled carbon nanotube (CNT) is plasma sprayed for improving the fracture toughness of the nanocomposite coating. Two different methodologies of CNT addition have been adopted in the powder feedstock to assist CNT dispersion in the nano-Al2O3 matrix. First, spray-dried nano-Al2O3 agglomerates are blended with 4 wt% CNT as powder-feedstock, which is subsequently plasma sprayed resulting in the fracture toughness improvement of 19.9%. Secondly, spray dried composite nano-Al2O3 and 4 wt% CNT powder was used as feedstock for attaining improved dispersion of CNTs. Plasma sprayed coating of composite spray dried powder resulted in increase of 42.9% in the fracture toughness. Coating synthesized from the blended powder displayed impact alignment of CNTs along splat interface, and CNTs chain loop structure anchoring the fused Al2O3 melt whereas coating synthesized from composite spray dried powder evinced anchoring of CNTs in the solid state sintered region and CNT mesh formation. Enhanced fracture toughness is attributed to significance of CNT dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号