首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
交叉加劲钢板剪力墙弹性屈曲研究   总被引:1,自引:0,他引:1  
用有限元方法对交叉加劲钢板剪力墙的弹性屈曲性能进行了研究,重点研究了加劲肋与墙板的刚度比、墙板高厚比、边长比以及加劲肋宽厚比等对弹性屈曲系数k的影响,同时与十字加劲板的抗剪屈曲性能进行了对比。研究结果表明,设置交叉加劲肋能显著提高钢板剪力墙的弹性屈曲荷载;屈曲系数k随着墙板边长比、高厚比以及加劲肋宽厚比的增大而趋于减小;本文给出的交叉加劲板弹性屈曲系数k的计算公式与有限元法的结果较吻合。  相似文献   

2.
利用ANSYS有限元软件对交叉加劲钢板剪力墙的抗剪性能进行了研究,重点分析了肋板刚度比和加劲肋宽厚比对剪力墙荷载—位移曲线的影响。研究表明,设置交叉加劲肋能够显著提高钢板剪力墙的承载能力;肋板刚度比对于厚板和薄板抗剪性能的影响不同,对薄板的影响大于厚板;然而无论是厚板还是薄板,加劲肋宽厚比对于墙板荷载—位移曲线的影响都很小。  相似文献   

3.
全加劲两侧开缝钢板剪力墙弹性屈曲研究   总被引:3,自引:0,他引:3  
采用有限元方法对全加劲两侧开缝钢板剪力墙在面内水平荷载作用下的弹性屈曲临界荷载、屈曲模态进行了研究。对影响其弹性屈曲性能的参数进行了分析,包括两侧和中部加劲肋与墙板的刚度比、两侧和中部加劲肋宽厚比以及墙板高厚比和边长比。给出了全加劲两侧开缝钢板剪力墙加劲肋的弹性屈曲设计参考公式,为开缝钢板剪力墙的应用提供依据。  相似文献   

4.
《钢结构》2017,(1):11-14
仅与框架梁相连的钢板剪力墙侧边易发生屈曲,对侧边进行加劲可提高其屈曲承载能力。对边缘方钢管端柱加劲的480个钢板剪力墙弹性屈曲性能进行分析,研究端柱刚度对剪力墙屈曲模态的影响,分析方钢管端柱加劲钢板剪力墙弹性屈曲性能要求和端柱门槛刚度确定方法;通过有限元方法求解方钢管端柱加劲剪力墙弹性屈曲系数,并对影响因素进行分析,给出弹性屈曲系数计算式。  相似文献   

5.
侯蕾  刘皓 《山西建筑》2010,36(4):64-65
运用ANSYS有限元软件对高厚比在200~800范围内的纵横加劲肋钢板剪力墙进行了弹性屈曲性能分析,以了解加劲板弹性屈曲应力对比用钢量是否有相应的增加程度,从而为纵横加劲肋钢板剪力墙屈曲性能分析提供依据。  相似文献   

6.
以交叉加劲钢板深梁为研究对象,利用有限元软件ANSYS分析其弹性屈曲性能,讨论了抗弯刚度比、跨高比、钢板深梁厚度对其弹性屈曲性能的影响;考虑钢板深梁在钢框架的弯剪受力特性,根据板的经典理论建立了交叉加劲钢板深梁屈曲荷载计算公式,提出了等效屈曲系数。结果表明:交叉加劲钢板深梁的临界屈曲荷载随抗弯刚度比增大而增大,但达到门槛刚度比后,增大幅度急剧减小,得到门槛刚度比约为10;临界屈曲荷载随跨高比和板厚的减小而减小,等效屈曲系数随板厚减小而增大;等效屈曲系数与跨高比关系曲线由二次抛物线形向波浪形渐变,交叉加劲钢板深梁受力特性由剪切主导向弯曲主导过渡。  相似文献   

7.
侯蕾  矫铨 《建筑设计管理》2010,27(10):45-48
主要的研究对象为不同边框连接条件下、高厚比在400~800范围内的纵横加劲肋薄钢板剪力墙弹性屈曲性能分析.研究表明,加劲肋钢板剪力墙的屈曲均为相关屈曲,〈高层民用建筑钢结构技术规程〉(JGJ99-98)在特定条件下过高估计了纵横加劲肋钢板剪力墙的弹性屈曲承载力.本文提出了设计建议.  相似文献   

8.
李然  郭兰慧  张素梅 《工业建筑》2011,41(7):107-113
两边连接钢板剪力墙侧边由于受压屈曲产生较大变形,削弱其承载力和耗能能力。在两侧边采取加劲措施可以增强两侧边的稳定性,并在一定程度上提高承载能力和耗能能力。采用ANSYS有限元软件对侧边理想加劲的两边连接钢板剪力墙进行滞回分析,研究在理想加劲情况下,加劲肋对两边连接钢板剪力墙受力模式、承载能力和耗能能力的影响。分析结果表...  相似文献   

9.
通过对剪切作用下的闭口斜加劲钢板剪力墙进行有限元弹性屈曲分析,研究了肋板刚度比和抗扭抗弯刚度比对斜向槽钢加劲钢板剪力墙剪切屈曲性能及其加劲门槛刚度的影响。通过有限元分析,得到了斜向加劲钢板剪力墙临界剪切屈曲应力随内填板跨高比和加劲肋抗扭抗弯刚度比变化的关系曲线。考虑加劲肋对内填板加劲边转动约束,提出了第二门槛刚度,并给出了具有良好精度的斜向槽钢加劲钢板剪力墙的门槛刚度及第二门槛刚度计算公式。研究结果表明,受压型加劲肋对加劲板的临界剪切屈曲应力提高明显,随肋板刚度比的增大,加劲板的剪切屈曲应力增大,而受拉型加劲肋对板的屈曲荷载提高有限;当肋板刚度比达到第二门槛刚度时,加劲肋可以完全约束加劲边的面外位移和转动。当提高加劲肋的抗扭抗弯刚度比时,能够有效降低加劲肋的门槛刚度,因此,建议加劲肋的抗扭抗弯刚度比不低于0. 307。  相似文献   

10.
薛园  苏珉  马东  王泉 《钢结构》2014,29(12):1-7
两边连接竖向加劲式钢板剪力墙是一种新的结构形式,其优势很独特.运用ANSYS对跨高比L/H为0.5-1.5的75组单片墙的滞回性能进行参数化分析,详细归纳总结了滞回性能几个主要指标(滞回曲线、骨架曲线、能量耗散系数、刚度衰减系数)随着跨高比、板厚、加劲肋效应的变化规律.分析结果表明:跨高比越大滞回曲线捏缩效应表现得越明显,板厚越小捏缩现象出现得越早;能量耗散系数绝大多数随着跨高比的增大呈现降低的趋势;同一跨高比构件刚度随着板厚的减小而降低,同一板厚的构件刚度随着跨高比的增大而增大;增强加劲肋对钢板墙耗能能力的提高有一定的贡献,对于提高钢板墙刚度的效果不明显.  相似文献   

11.
十字加劲钢板剪力墙的抗剪极限承载力   总被引:13,自引:1,他引:13       下载免费PDF全文
我国《高层民用建筑钢结构技术规程》规定了钢板墙剪切弹性屈曲不先于剪切屈服,其明显的不足是没有利用板的屈曲后强度,同时弹性屈曲也不能作为结构在弹塑性阶段的设计指标。本文应用板的大挠度弹塑性有限元方法对十字加劲方形钢板剪力墙的屈曲后性能和极限承载力进行了系统的研究,并在大量数值分析的基础上,提出了以板的平均剪切应变相应的剪应力作为钢板剪力墙承载能力的极限状态,以达到利用薄板屈曲后强度的目的,进而提出了钢板剪力墙承载力的设计简化计算公式及钢板墙侧柱刚度阈值的计算公式,供设计参考。数值计算结果表明,影响钢板墙抗剪性能主要有三个参数:板高厚比、肋板刚度比和边柱刚度。  相似文献   

12.
采用理论分析和有限元方法,针对两边连接屈曲约束钢板剪力墙的受力机理和传力规律进行研究。提出了钢板墙边缘约束区的概念并确定了边缘约束区的宽度,分析了钢板墙的屈服形状、钢板墙内各部分应力流的分布规律和钢板墙与梁连接处的受力特点等。在此基础上提出了两边连接屈曲约束钢板剪力墙等效支撑模型,对不同尺寸、不同层数的框架 屈曲约束钢板剪力墙结构和框架 等效支撑结构在水平荷载作用下的力学性能进行分析,并对两种结构的荷载 位移曲线进行了对比。分析表明,所提出的等效支撑模型在结构刚度和承载力方面具有较好的准确性,无论是单调加载还是反复加载均能准确地模拟两边连接屈曲约束钢板剪力墙结构的受力行为。  相似文献   

13.
钢管混凝土框架-钢板组合剪力墙结构体系(CFST-CSPSW)具有良好的延性和耗能能力,在实际工程中具有很好的应用前景。文章采用OpenSees有限元软件建立了CFST-CSPSW结构体系分析模型,基于增量动力时程分析法(IDA法),评估了CFST-CSPSW结构体系的抗震性能,分析了结构层数、跨数、自振周期等参数对结构性能参数的影响规律。研究表明:钢管混凝土框架-钢板组合剪力墙结构体系是一种抗震性能优越的双重抗侧力结构体系,其结构反应修正系数R和位移放大系数Cd随结构自振周期、层数、跨数的增大略有减小,结构性能系数变化趋势均随结构高度的增大逐渐减小趋于平缓。基于本文分析模型,提出了钢管混凝土框架-两边连接钢板组合剪力墙结构体系的结构反应修正系数R平均值为3.27,位移放大系数Cd平均值为3.05,为基于性能的组合结构体系设计提供参考。  相似文献   

14.
钢板剪力墙结构竖向防屈曲简化设计方法   总被引:2,自引:0,他引:2  
采用能量原理推导了设置竖向加劲肋钢板墙的弹性屈曲应力的简化计算公式,并根据理论公式进行了参数分析,研究了钢板高宽比、加劲肋数量、加劲肋与钢板刚度比以及加劲肋与钢板面积比等参数对钢板墙竖向屈曲荷载的影响。简化公式计算结果与有限元计算结果吻合良好。研究表明,在钢板墙高宽比确定的情况下,加劲肋与钢板的刚度比是影响加劲板竖向屈曲荷载的主要因素,加劲肋与钢板的面积比对加劲板屈曲荷载的影响较小,加劲肋端部与周边框架不连接的钢板墙优于加劲肋端部与周边框架连接的钢板墙。  相似文献   

15.
为研究开洞形式及槽钢加劲肋对钢板剪力墙抗震性能的影响,对2个1/3缩尺的单跨双层侧边开洞-斜向槽钢加劲钢板剪力墙进行了低周往复荷载试验,得到了双侧开洞 交叉加劲钢板剪力墙和单侧开洞-多道斜向槽钢加劲钢板剪力墙的荷载-位移曲线、破坏特征、骨架曲线等,分析了两种钢板墙的承载能力、延性、退化特性以及耗能能力等性能。通过分析框架梁的受力情况,给出了考虑加劲肋作用的开洞处梁腹板最小厚度计算公式。试验结果表明,两种形式的槽钢加劲钢板剪力墙均有良好的抗震性能。双侧开洞 交叉加劲钢板剪力墙试件的滞回环饱满呈梭形;单侧开洞-多道斜向槽钢加劲钢板剪力墙试件在加载前期滞回曲线有“捏缩”现象,耗能梁段形成后“捏缩”现象消失。槽钢加劲肋能有效限制内填钢板的屈曲变形,加载过程中未发生扭转,避免加劲肋破坏导致加劲效果失效。双侧开洞 交叉加劲钢板剪力墙试件受槽钢加劲肋作用,中梁开洞处梁腹板承受剪力增大约30%。建议在开洞处梁腹板合理布置加劲肋,避免框架梁过早屈服影响整体结构性能的发挥。  相似文献   

16.
采用有限元软件ABAQUS 6.10对非均匀压应力、剪应力共同作用时非加劲和竖向加劲钢板剪力墙进行屈曲分析,研究了非均匀竖向压应力对非加劲钢板剪力墙临界屈曲剪应力的影响,得到了竖向加劲钢板剪力墙临界屈曲剪应力随加劲肋加劲系数的变化曲线及阈值刚度。结果表明,非加劲钢板剪力墙临界屈曲剪应力随着钢板剪力墙宽高比、高厚比和非均匀压应力剪应力比的增大而减小,随着竖向压应力非均匀系数的增大而增加|加劲肋阈值刚度随着竖向压应力非均匀系数、小区格宽高比、加劲肋数目和加劲肋抗扭抗弯刚度比的增大而减小。  相似文献   

17.
Different ways have been presented to prevent elastic buckling of steel shear walls. One of these solutions is corrugated shear wall. In this type of wall, shear buckling strength increases without increasing the thickness of the panel. Numerical modeling results indicate that, always, shear buckling strength of corrugated panels is more than the flat panels and with the right choice of the geometric parameters of corrugated panels; without increasing the thickness of the panel, we can improve buckling strength significantly. In the trapezoidal corrugated panels, reducing the width of the subpanels do not always increase buckling strength of the panel, but it changes the panel buckling shape from the local buckling mode to the global buckling. In addition, in panels, with the low width of the subpanels, elastic buckling does not happen in the subpanels. Comparing numerical analysis with the theoretical relations showed that the results of numerical analysis with the relations that include local buckling, global buckling, and shear yielding stress, have a better approximation and in another word, interaction buckling is the combination of the local buckling, global buckling, and shear yielding stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号