首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

2.
生物沸石滤池去除微污染水源水中氨氮的挂膜启动   总被引:3,自引:0,他引:3  
胥红  邓慧萍 《供水技术》2009,3(5):10-13
对沸石滤料生物滤池处理微污染水源水中低浓度氨氮的挂膜启动性能进行了研究。试验结果表明,挂膜过程可以根据氨氮、亚硝酸盐氮、硝酸盐氮浓度的变化分为三个阶段:初期沸石发挥本身对铵离子的吸附交换性能,氨氮去除率达88%以上;中期开始出现生物硝化作用,亚硝酸盐积累明显,硝酸盐出水浓度不稳定,氨氮去除率稳定,但下降至65%左右;后期硝化反应稳定进行,亚硝酸盐迅速转化为硝酸盐,氨氮去除率稳定在60%以上。生物沸石滤池挂膜同时应考察亚硝酸盐氮、硝酸盐氮浓度变化,在出水亚硝酸氮明显积累后又稳定降低,且硝酸盐氮稳定积累时方可认为挂膜成功。进出水pH值的变化可以指示硝化反应的进行程度和生物膜形成阶段。  相似文献   

3.
针对生物滤池处理高氨氮水源水过程中硝酸盐、亚硝酸盐积累的问题,提出一种能够同时去除"三氮"污染物的强化过滤技术——生物催化滤池。该技术将传统生物过滤与催化还原反应相结合,在生物过滤去除氨氮的同时,钯/锡双金属催化滤料可将硝酸盐氮和亚硝酸盐氮还原为氮气。在滤池的滤速为10 m/h时,对氨氮和TOC的去除率分别为82. 12%和71. 94%,主要依靠生物滤层内微生物的降解作用来去除;对硝酸盐氮和亚硝酸盐氮的去除率分别为58. 22%和78. 65%,主要通过催化还原滤料的化学反应来去除;滤池出水浊度<3 NTU。生物催化滤池在生化反应和催化还原的共同作用下能够有效缓冲低温、高氨氮、高硝酸盐氮、高亚硝酸盐氮以及高TOC等特殊条件下短时间连续冲击,具有较强的抗冲击负荷能力,保证产水水质稳定。生物催化滤池可以作为微污染水源水的预处理工艺,保障后续工艺的稳定运行,具有良好的应用前景。  相似文献   

4.
The production and emission of hydrogen sulfide and methane by anaerobic microoganisms in sewer systems is a well-documented problem. The effectiveness of nitrite in controlling sulfide and methane production was tested in a laboratory scale sewer reactor. Nitrite was continuously dosed in the reactor for 25 days at concentrations of 20-140mgN/L. No sulfide and methane accumulation was observed in the reactor in the presence of nitrite. A significant reduction was observed in the sulfate reduction and methane production capabilities of the biofilm. Nitrite also stimulated biological sulfide oxidation within the biofilm. The nitrite uptake rate of the reactor increased over the nitrite dosing period and nitrous oxide production was observed within the biofilm. When nitrite addition was stopped, sulfate reduction and methane production gradually resumed, and reached pre-nitrite addition levels after 2.5 months. The slow recovery suggests that nitrite can be applied intermittently for sulfide and methane control, which represents a key advantage over similar chemicals such as nitrate and oxygen. The study demonstrates nitrite addition as a promising and effective strategy for the management of sulfide and methane in sewers. Further investigation and optimization are still required before application in the field.  相似文献   

5.
为提高脱氮效果并实现利用内碳源进行反硝化,开展了SBBR(以好氧-缺氧方式运行)处理生活污水的脱氮研究.在好氧阶段,SBBR中的生物膜能创造缺氧微环境并吸收、储存碳,实现了同步硝化反硝化,降低了硝态氮的浓度;在缺氧阶段,可利用内碳源实现剩余硝态氮的反硝化.溶解氧浓度的大小对好氧时间、好氧剩余硝态氮浓度和缺氧反应时间有较大影响,因而可以利用在线检测的DO作为曝气量控制参数.DO、pH和ORP值的变化具有规律性,反映了生物脱氮过程中耗氧和供氧、产酸和产碱、氧化和还原过程的变化.为准确判断好氧和缺氧反应过程的终点,并减少控制的滞后时间,建议以pH值的"氨谷"和ORP的"硝酸盐膝"作为主控制特征点分别指示硝化和反硝化的终点,而以ORP的"氨肘"和pH值的"硝酸盐峰"作为参考或辅助控制特征点.  相似文献   

6.
The pathways of N in aerobic farm waste treatment systems are discussed in relation to the dissolved oxygen (DO) and pH of the mixed liquor. The change in pH, DO, oxygen uptake rate and nitrogen balance were monitored under steady, and non-steady, state conditions in an oxidation ditch treating undiluted pig waste. A kinetic analysis of the mass balance for nitrogen allowed an interpretation of the fate of nitrogen under different prevailing conditions. Undesirable accumulations of nitrite were noted in the presence of high levels of free NH3 and HNO2. The process was self-promoting and was encouraged by the influx of raw waste. Concentrations of 500 mg 1−1 NO2-N and 1200 mg 1−1 NO3-N were the maximum values observed and were considered to be the concentrations at which product inhibition arrested nitrifying activity. Attainment of these levels prevented complete nitrification despite an adequate retention time. pH and DO were inversely related probably through nitrification, but pH appeared to be lowered by accumulation of nitrite and nitrate anions, and thus by the balance between nitrification and denitrification. Considerable N loss through denitrification was found to occur despite apparently aerobic mixed liquors. At low DO simultaneous nitrification-denitrification could eliminate 90 per cent of the soluble-N. NH3 desorption in laboratory cultures was found to be first order in free NH3 but was not a significant mode of N loss under field conditions.  相似文献   

7.
《Water research》1996,30(8):1851-1857
Experiments were conducted to investigate the ammonia, nitrite and nitrate removal from aqueous solution using ozonation and ion exchange. The operating variables of the combined ozonation and ion exchange processes include the pH, initial concentration of nitrogenous compounds and flow rate of aqueous solution. The effects of those variables on the removal efficiencies of the nitrogeneous compounds by ozonation, or ion exchange or both were explored. Ozonation was found able to completely convert nitrite to nitrate. However its capability of ammonia removal is much limited. The anionic and cationic ion exchange resins were able to efficiently remove nitrate and residual ammonia. An optimal operating range of OH for ammonia removal by the combined ozonation and ion exchange was obtained. However, removal of nitrite and/or nitrate by combined ozonation and ion exchange was found to be relatively insensitive to pH. It was observed that the combined process is capable of efficiently maintaining the nitrogeneous compounds in the aqueous solution at very low concentration levels.  相似文献   

8.
Fux C  Velten S  Carozzi V  Solley D  Keller J 《Water research》2006,40(14):2765-2775
Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 kg [corrected] NH(4)(+)-N m(-3)d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2 g COD g(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation.  相似文献   

9.
AO—MBR工艺短程硝化处理高氨氮废水试验研究   总被引:1,自引:0,他引:1  
采用AO—MBR工艺短程硝化处理高氨氮废水,系统可以快速启动实现全程硝化。结果表明,AO—MBR工艺在温度为24~32℃,pH值为7.8~8.4,好氧池DO降至0.5mg/L时,运行21天后全程硝化转变为稳定的短程硝化,氨氮去除率和亚硝酸盐氮积累率均大于90%;接种后及硝化类型转变时污泥浓度会大幅降低,运行中后期污泥浓度基本保持稳定。  相似文献   

10.
应用DO、pH和ORP在线控制A/O硝化过程   总被引:2,自引:1,他引:2  
开展了应用DO、pH和ORP传感器在线控制A/O工艺硝化过程的试验研究,结果表明,好氧区第1格室的DO浓度可以指示进水氨氮浓度高低;好氧区首、末端pH差值与进水氨氮浓度具有较好的相关性;好氧区pH曲线可以指示系统硝化进行的程度及曝气量和碱度是否充足;好氧区末端ORP值与出水氨氮、硝酸氮浓度具有很好的相关性;好氧区最后格室的DO浓度和ORP值呈对数相关性。基于上述在线信息建立的A/O工艺硝化过程控制策略,不但能提高出水水质,而且降低了运行能耗。  相似文献   

11.
厌氧氨氧化技术利用NO_=2^--N氧化NH_4^+-N,实现污水中氮素的高效去除,其中NO_=2^--N的产生是实现厌氧氨氧化应用的难点。短程硝化是获取NO_=2^--N的重要途径之一,但目前在实际工程中通过短程硝化难以实现长期稳定的亚硝酸盐积累。短程反硝化工艺将反硝化过程控制在硝酸盐还原的第一步来积累NO_=2^--N,可实现从反硝化途径获得NO_=2^--N为厌氧氨氧化反应提供底物,去除污水中的氮素污染物。简要介绍了短程反硝化工艺的发展背景、研究进展、启动及控制策略等,并对短程反硝化过程亚硝酸盐积累机制及其与厌氧氨氧化工艺耦合方式进行了总结,最后对其未来的研究方向进行了展望。  相似文献   

12.
Hu JY  Ong SL  Ng WJ  Lu F  Fan XJ 《Water research》2003,37(14):3463-3471
This study investigated the characteristics of denitrifying phosphorus removal bacteria by using three different types of electron acceptors as well as the positive role of nitrite in phosphorus removal process. Denitrifying phosphorous removal bacteria was enriched under anaerobic-anoxic (A/A) condition. To understand A/A sludge better, sludge from two other sources were also studied. These include sludges obtained from a lab-scale anaerobic-anoxic-aerobic (A/A/O) system and a local sewage treatment plant. Three types of possible electron acceptors (oxygen, nitrate and nitrite) were examined for their roles in phosphorus uptake. The results obtained indicated that oxygen, nitrate and nitrite were able to act as electron acceptors successfully. This observation suggested that in addition to the two well-accepted groups of phosphorus removal bacteria (one can only utilize oxygen to take up phosphorus, P(O), while the other can use both oxygen and nitrate, P(ON)), a new group of phosphorus removal bacteria, P(ON(n)), which could use oxygen, nitrate or nitrite to take up phosphorus was identified. The relative population of these three types of bacteria could be calculated from results obtainable from phosphorus uptake batch experiments with either oxygen or nitrate or nitrite as electron acceptor. The results obtained in this study showed that A/A sludge had similar phosphorus removal performance as the A/A/O sludge. However, it has better denitrifying phosphorus removal capability, which was demonstrated by the relative population of the three groups of bacteria. The results also suggested that nitrite was not an inhibitor to phosphorus removal process. Instead, it is an alternative electron acceptor to oxygen or nitrate.  相似文献   

13.
Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V = 300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.  相似文献   

14.
新型生物脱氮工艺--OLAND工艺   总被引:5,自引:0,他引:5  
OLAND工艺是基于亚硝酸型硝化-厌氧氨氧化脱氮技术而开发的生物脱氮新工艺.该工艺首先采用限制溶解氧浓度实现氨氮的部分亚硝化并实现亚硝酸盐氮的浓度积累,接着进行厌氧氨氧化反应,从而达到去除含氮污染物的目的.与传统生物脱氮工艺相比,该工艺具有耗氧量少、污泥产量少、不需外加碳源等优点.  相似文献   

15.
研究了分别填充堆肥和污泥的生物滤塔对含三甲胺气体的处理能力.结果表明,两种生物滤塔均能有效处理含三甲胺的气体,对三甲胺的去除率几乎达到了100%,三甲胺被生物降解并生成氨.堆肥生物滤塔各段填料中的硝态氮含量随时间的延长呈显著提高的趋势,但pH值出现下降,说明其中发生了氨的硝化作用.而在污泥生物滤塔中,随着氨的积累则各填料层的pH值迅速升高,并且没有观察到亚硝态氮以及硝态氮含量的增加,因此其不具备进一步降解氨的能力.  相似文献   

16.
17.
Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N2O production were investigated in a laboratory batch-scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions.Under aerobic conditions, the addition of nitrite resulted in strongly nitrite-dependent N2O production, mainly by nitrifier denitrification of ammonia-oxidizing bacteria (AOB). Furthermore, N2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO2/l); the contribution of nitrifier denitrification by AOB increased at higher nitrite and lower ammonia concentrations towards the end of the experiment.Under anoxic conditions, nitrate reducing experiments confirmed that N2O emission is low under optimal growth conditions for heterotrophic denitrifiers (e.g. no oxygen input and no limitation of readily biodegradable organic carbon). However, N2O and nitric oxide (NO) production rates increased significantly in the presence of nitrite or low dissolved oxygen concentrations.  相似文献   

18.
Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge.  相似文献   

19.
Hyphomicrobrium spp was found as dominant organism in a two-sludge nitrifying-denitrifying wastewater treatment system with methanol as external carbon source. The optimal pH for growth was found to be 8.3 and the organism seemed to be rather temperature sensitive (Q10 = 3.3). The denitrification rate was expressed as a function of pH and temperature since it was almost independent on the concentrations of methanol and nitrate-nitrogen. Identical growth rates are found when using either nitrate- or nitrite-nitrogen; the nitrite consumption rate, however, is twice the nitrate reduction rate. Nitrate to nitrite reduction is the rate limiting step in denitrification reaction and some inhibition by high concentrations of nitrite on the nitrate reduction is measured. The methanol/nitrate-N ratio is 2.55 and increasing to 3.5 at extreme pH values. The endogenous denitrification rate is only 10% of the normal denitrification rate measured.  相似文献   

20.
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号