首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an Al/sub 0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel HEMT with enhanced linearity. By engineering the channel region, i.e., inserting a 6-nm-thick AlGaN layer with 5% Al composition in the channel region, a composite-channel HEMT was demonstrated. Transconductance and cutoff frequencies of a 1 /spl times/100 /spl mu/m HEMT are kept near their peak values throughout the low- and high-current operating levels, a desirable feature for linear power amplifiers. The composite-channel HEMT exhibits a peak transconductance of 150 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 12 GHz and a peak power gain cutoff frequency (f/sub max/) of 30 GHz. For devices grown on sapphire substrate, maximum power density of 3.38 W/mm, power-added efficiency of 45% are obtained at 2 GHz. The output third-order intercept point (OIP3) is 33.2 dBm from two-tone measurement at 2 GHz.  相似文献   

2.
AlGaAs/InGaAs MODFETs having 25% indium in the channel and L/sub G/=0.35 mu m have been fabricated. From DC device characterisation, a maximum saturation current of 670 mA/mm and an extrinsic transconductance of 500 mS/mm have been measured. A maximum unilateral gain cutoff frequency of f/sub c/=205 GHz and a maximum current gain cutoff frequency of f/sub T/=86 GHz have been achieved. Bias dependence of f/sub c/ and f/sub T/ has been measured. At 12 GHz a minimum noise figure of NF=0.8 dB and an associated gain of 11 dB have been measured.<>  相似文献   

3.
AlGaN-GaN high-electron mobility transistors (HEMTs) based on high-resistivity silicon substrate with a 0.17-/spl mu/m T-shape gate length are fabricated. The device exhibits a high drain current density of 550 mA/mm at V/sub GS/=1 V and V/sub DS/=10 V with an intrinsic transconductance (g/sub m/) of 215 mS/mm. A unity current gain cutoff frequency (f/sub t/) of 46 GHz and a maximum oscillation frequency (f/sub max/) of 92 GHz are measured at V/sub DS/=10 V and I/sub DS/=171 mA/mm. The radio-frequency microwave noise performance of the device is obtained at 10 GHz for different drain currents. At V/sub DS/=10 V and I/sub DS/=92 mA/mm, the device exhibits a minimum-noise figure (NF/sub min/) of 1.1 dB and an associated gain (G/sub ass/) of 12 dB. To our knowledge, these results are the best f/sub t/, f/sub max/ and microwave noise performance ever reported on GaN HEMT grown on Silicon substrate.  相似文献   

4.
设计并研制了一种新型复合沟道Al0.3Ga0.7N/Al0.05Ga0.95N/GaN HEMT(CC-HEMT)微波单片集成压控振荡器(VCO),且测试了电路的性能.CC-HEMT的栅长为1μm,栅宽为100μm.叉指金属-半导体-金属(MSM)变容二极管被设计用于调谐VCO频率.为提高螺旋电感的Q值,聚酰亚胺介质被插入在电感金属层与外延在蓝宝石上GaN层之间.当CC-HEMT的直流偏置为Vgs=-3V,Vds=6V,变容二极管的调谐电压从5.5V到8.5V时,VCO的频率变化从7.04GHz到7.29GHz,平均输出功率为10dBm,平均功率附加效率为10.4%.当加在变容二极管上电压为6.7V时,测得的相位噪声为-86.25dBc/Hz(在频偏100KHz时)和-108dB/Hz(在频偏1MHz时),这个结果也是整个调谐范围的平均值.据我们所知,这个相位噪声测试结果是文献报道中基于GaN HEMT单片VCO的最好结果.  相似文献   

5.
High-performance AlGaN/GaN high electron-mobility transistors with 0.18-/spl mu/m gate length have been fabricated on a sapphire substrate. The devices exhibited an extrinsic transconductance of 212 mS/mm, a unity current gain cutoff frequency (f/sub T/) of 101 GHz, and a maximum oscillation frequency (f/sub MAX/) of 140 GHz. At V/sub ds/=4 V and I/sub ds/=39.4 mA/mm, the devices exhibited a minimum noise figure (NF/sub min/) of 0.48 dB and an associated gain (Ga) of 11.16 dB at 12 GHz. Also, at a fixed drain bias of 4 V with the drain current swept, the lowest NFmin of 0.48 dB at 12 GHz was obtained at I/sub ds/=40 mA/mm, and a peak G/sub a/ of 11.71 dB at 12 GHz was obtained at I/sub ds/=60 mA/mm. With the drain current held at 40 mA/mm and drain bias swept, the NF/sub min/,, increased almost linearly with the increase of drain bias. Meanwhile, the Ga values decreased linearly with the increase of drain bias. At a fixed bias condition (V/sub ds/=4 V and I/sub ds/=40 mA/mm), the NF/sub min/ values at 12 GHz increased from 0.32 dB at -55/spl deg/C to 2.78 dB at 200/spl deg/C. To our knowledge, these data represent the highest f/sub T/ and f/sub MAX/, and the best microwave noise performance of any GaN-based FETs on sapphire substrates ever reported.  相似文献   

6.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

7.
A high breakdown voltage and a high turn-on voltage (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P/InGaAs quasi-enhancement-mode (E-mode) pseudomorphic HEMT (pHEMTs) with field-plate (FP) process is reported for the first time. Between gate and drain terminal, the transistor has a FP metal of 1 /spl mu/m, which is connected to a source terminal. The fabricated 0.5/spl times/150 /spl mu/m/sup 2/ device can be operated with gate voltage up to 1.6 V owing to its high Schottky turn-on voltage (V/sub ON/=0.85 V), which corresponds to a high drain-to-source current (I/sub ds/) of 420 mA/mm when drain-to-source voltage (V/sub ds/) is 3.5 V. By adopting the FP technology and large barrier height (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P layer design, the device achieved a high breakdown voltage of -47 V. The measured maximum transconductance, current gain cutoff frequency and maximum oscillation frequency are 370 mS/mm, 22 GHz , and 85 GHz, respectively. Under 5.2-GHz operation, a 15.2 dBm (220 mW/mm) and a 17.8 dBm (405 mW/mm) saturated output power can be achieved when drain voltage are 3.5 and 20 V. These characteristics demonstrate that the field-plated (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P E-mode pHEMTs have great potential for microwave power device applications.  相似文献   

8.
The DC and RF characteristics of Ga/sub 0.49/In/sub 0.51/P-In/sub 0.15/Ga/sub 0.85/As enhancement- mode pseudomorphic HEMTs (pHEMTs) are reported for the first time. The transistor has a gate length of 0.8 /spl mu/m and a gate width of 200 /spl mu/m. It is found that the device can be operated with gate voltage up to 1.6 V, which corresponds to a high drain-source current (I/sub DS/) of 340 mA/mm when the drain-source voltage (V/sub DS/) is 4.0 V. The measured maximum transconductance, current gain cut-off frequency, and maximum oscillation frequency are 255.2 mS/mm, 20.6 GHz, and 40 GHz, respectively. When this device is operated at 1.9 GHz under class-AB bias condition, a 14.7-dBm (148.6 mW/mm) saturated power with a power-added efficiency of 50% is achieved when the drain voltage is 3.5 V. The measured F/sub min/ is 0.74 dB under I/sub DS/=15 mA and V/sub DS/=2 V.  相似文献   

9.
We present a comprehensive investigation of the cryogenic performance of third-generation silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technology. Measurements of the current-voltage (dc), small-signal ac, and broad-band noise characteristics of a 200-GHz SiGe HBT were made at 85 K, 120 K, 150 K, 200 K, and 300 K. These devices show excellent behavior down to 85 K, maintaining reasonable dc ideality, with a peak current gain of 3800, a peak cut-off frequency (f/sub T/) of 260 GHz, a peak f/sub max/ of 310 GHz, and a minimum noise figure (NF/sub min/) of approximately 0.30 dB at a frequency of 14 GHz, in all cases representing significant improvements over their corresponding values at 300 K. These results demonstrate that aggressively scaled SiGe HBTs are inherently well suited for cryogenic electronics applications requiring extreme levels of transistor performance.  相似文献   

10.
This letter reports high-performance passivated AlGaN/GaN high electron-mobility transistors (HEMTs) with 0.25-/spl mu/m gate-length for low noise applications. The devices exhibited a minimum noise figure (NF/sub min/) of 0.98 dB and an associated gain (G/sub a/) of 8.97 dB at 18 GHz. The noise resistance (R/sub n/), the measure of noise sensitivity to source mismatch, is 31/spl Omega/ at 18 GHz, which is relatively low and suitable for broad-band low noise amplifiers. The noise modeling analysis shows that the minimum noise figure of the GaN HEMT can be reduced further by reducing noise contributions from parasitics. These results demonstrate the viability of AlGaN/GaN HEMTs for low-noise as well as high power amplifiers.  相似文献   

11.
《Electronics letters》1990,26(1):27-28
AlGaAs/GaInAs/GaAs pseudomorphic HEMTs with an InAs mole fraction as high as 35% in the channel has been successfully fabricated. The device exhibits a maximum extrinsic transconductance of 700 mS/mm. At 18 GHz, a minimum noise figure of 0.55 dB with 15.0 dB associated gain was measured. At 60 GHz, a minimum noise figure as low as 1.6 dB with 7.6 dB associated gain was also obtained. This is the best noise performance yet reported for GaAs-based HEMTs.<>  相似文献   

12.
We report low microwave noise performance of discrete AlGaN-GaN HEMTs at DC power dissipation comparable to that of GaAs-based low-noise FETs. At 1-V source-drain (SD) bias and DC power dissipation of 97 mW/mm, minimum noise figures (NF/sub min/) of 0.75 dB at 10 GHz and 1.5 dB at 20 GHz were achieved, respectively. A device breakdown voltage of 40 V was observed. Both the low microwave noise performance at small DC power level and high breakdown voltage was obtained with a shorter SD spacing of 1.5 /spl mu/m in 0.15-/spl mu/m gate length GaN HEMTs. By comparison, NF/sub min/ with 2 /spl mu/m SD spacing was 0.2 dB greater at 10 GHz.  相似文献   

13.
A third-order intermodulation (IM/sub 3/) cancellation technique using a submixer is proposed for a low-power low-distortion mixer. The IM/sub 3/ cancellation is achieved by summing IM/sub 3/ generated in a main mixer and the submixer, which are almost the same amplitude and opposite phase. The mixer was designed to operate at 870 MHz. The proposed technique reduces IM/sub 3/ by 18 dB with a current increase of about 15% and is suitable for low-power applications. The mixer achieved an input-referred third-order intercept point (IIP/sub 3/) of 10 dBm, a gain of 8.7 dB, and an NF of 9.8 dB and dissipates 30 mW from 2.9 V. The IC is fabricated in a SiGe bipolar transistor with f/sub T/= 30 GHz. The IC occupies 1.44 mm/spl times/1.44 mm.  相似文献   

14.
We report on a double-pulse doped, double recess In/sub 0.35/Al/sub 0.65/As-In/sub 0.35/Ga/sub 0.65/As metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. This 0.15-/spl mu/m gate MHEMT exhibits excellent de characteristics, high current density of 750 mA/mm, extrinsic transconductance of 700 mS/mm. The on and off state breakdown are respectively of 5 and 13 V and defined It gate current density of 1 mA/mm. Power measurements at 60 GHz were performed on these devices. Biased between 2 and 5 V, they demonstrated a maximum output power of 390 mW/mm at 3.1 V of drain voltage with 2.8 dB power gain and a power added efficiency (PAE) of 18%. The output power at 1 dB gain compression is still of 300 mW/mm. Moreover, the linear power gain is of 5.2 dB. This is to our knowledge the best output power density of any MHEMT reported at this frequency.  相似文献   

15.
In this letter, the authors report on the high-frequency (HF) performance of self-assembled carbon nanotube field-effect transistors. HF device structures including a large number of single-wall carbon nanotubes have been designed and optimized in order to establish a new state of the art. The device exhibits a current gain (|H/sub 21/|/sup 2/) cutoff frequency (f/sub t/) of 8 GHz and a maximum stable gain value of 10 dB at 1 GHz, after de-embedding the access pads. Considering such results, nanotube-based circuits with gigahertz performance are now conceivable.  相似文献   

16.
In this brief, we demonstrate that ultralow-loss and broadband inductors can be obtained by using the CMOS process compatible backside inductively coupled-plasma (ICP) deep-trench technology to selectively remove the silicon underneath the inductors. The results show that a 378.5% increase in maximum Q-factor (Q/sub max/) (from 10.7 at 4.7 GHz to 51.2 at 14.9 GHz), a 22.1% increase in self-resonant frequency (f/sub SR/) (from 16.5 to 20.15 GHz), a 16.3% increase (from 0.86 to 0.9999) in maximum available power gain (G/sub Amax/) at 5 GHz, and a 0.654-dB reduction (from 0.654 dB to 4.08/spl times/10/sup -4/ dB) in minimum noise figure (NF/sub min/) at 5 GHz were achieved for a 2-nH inductor after the backside ICP dry etching. In addition, state-of-the-art ultralow-loss G/sub Amax//spl les/0.99 (i.e., NF/sub min//spl les/0.045 dB) for frequencies lower than 12.5 GHz was achieved for this 2-nH inductor after the backside inductively coupled-plasma dry etching. This means this on-chip inductor-on-air can be used to realize an ultralow-noise 3.1-10.6 GHz ultrawide-band RFIC. These results show that the CMOS process compatible backside ICP etching technique is very promising for system-on-a-chip applications.  相似文献   

17.
We fabricated 30-nm gate pseudomorphic channel In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As high electron mobility transistors (HEMTs) with reduced source and drain parasitic resistances. A multilayer cap structure consisting of Si highly doped n/sup +/-InGaAs and n/sup +/-InP layers was used to reduce these resistances while enabling reproducible 30-nm gate process. The HEMTs also had a laterally scaled gate-recess that effectively enhanced electron velocity, and an adequately long gate-channel distance of 12nm to suppress gate leakage current. The transconductance (g/sub m/) reached 1.5 S/mm, and the off-state breakdown voltage (BV/sub gd/) defined at a gate current of -1 mA/mm was -3.0 V. An extremely high current gain cutoff frequency (f/sub t/) of 547 GHz and a simultaneous maximum oscillation frequency (f/sub max/) of 400 GHz were achieved: the best performance yet reported for any transistor.  相似文献   

18.
The uniformly doped and the /spl delta/-doped In/sub 0.52/Al/sub 0.48/As/In/sub 0.6/Ga/sub 0.4/As metamorphic high-electron mobility transistors (MHEMTs) were fabricated, and the dc characteristics and the third-order intercept point (IP3) of these devices were measured and compared. Due to more uniform electron distribution in the quantum-well region, the uniformly doped MHEMT exhibits a flatter transconductance (G/sub m/) versus drain-to-source current (I/sub DS/) curve and much better linearity with higher IP3 and higher IP3-to-P/sub dc/ ratio as compared to the /spl delta/-doped MHEMT, even though the /spl delta/-doped device exhibits higher peak transconductance. As a result, the uniformly doped MHEMT is more suitable for communication systems that require high linearity operation.  相似文献   

19.
In/sub 0.5/Al/sub 0.5/As--In/sub 0.5/Ga/sub 0.5/As metamorphic high-electron mobility transistor (mHEMT) dc-30 GHz distributed single-pole-single through (SPST) switches were designed and fabricated using the low-/spl kappa/ benzocyclobutene (BCB) bridged technology. The current gain cutoff frequency, and the electron transit time of In/sub 0.5/Al/sub 0.5/As--In/sub 0.5/Ga/sub 0.5/As mHEMTs have been investigated. By analyzing the extrinsic total delay time, the effective velocity of electrons can be estimated, and the average velocity is 2.3/spl times/10/sup 7/cm/s. The dc-30 GHz distributed wideband SPST switch exhibits an insertion loss of less than 5.5 dB, and an isolation larger than 30 dB, which is the first demonstration of the high-isolation of InAlAs-InGaAs mHEMTs monolithic switch. As to the power performance, this switch can handle the power up to 12 dBm at 2.4 GHz. After over 250 h of 85-85 (temperature =85/spl deg/C, humidity =85%) environmental evaluation, this BCB passivated and bridged microwave and monolithic integrated circuit switch demonstrates reliable RF characteristics without any significant performance change, which proves that this process using the low-/spl kappa/ BCB layer is attractive for millimeter-wave circuit applications.  相似文献   

20.
In this paper, a novel microstrip-line layout is used to make accurate measurements of the minimum noise figure (NF/sub min/) of RF MOSFETs. A low NF/sub min/ of 1.05 dB at 10 GHz was directly measured for 16-finger 0.18-/spl mu/m MOSFETs, without de-embedding. Using an analytical expression for NF/sub min/, we have developed a self-consistent dc current-voltage, S-parameter, and NF/sub min/ model, where the simulated results match the measured device characteristics well, both before and after electrical stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号