首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
High-performance and very compact heat sinks have been developed for effective cooling of VLSIs with high heat-generation densities. Their heat transfer and pressure loss characteristics in air-jet cooling have been experimentally studied. The highly compact heat sinks were plate-fin arrays with a very small fin pitch of 0.4–2.0 mm. The rectangular jet nozzle width that gave the highest cooling performance was 30 to 40% of the streamwise length of the heat sinks. The influence of fin height on heat transfer became weak when the ratio of the height to the thickness of the fin exceeded approximately 35. When the air flow rate was constant, the thermal conductance increased as the fin pitch decreased. For a constant fin pitch, heat sinks with smaller fin thickness showed larger thermal conductance at a given blower power consumption. In our experimental range, the heat dissipation rate per unit heat sink volume increased as the base plate area of the heat sink became small. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(6): 399–414, 1998  相似文献   

2.
Yew Mun Hung 《传热工程》2013,34(14):1184-1192
This article presents an analytical study on forced convection of laminar fully developed flow of incompressible, constant-property nanofluids in microchannels. Closed-form solutions for the temperature distributions in the radial direction with the incorporation of viscous dissipation are obtained under isoflux boundary condition. The effects of the governing parameters, including modified Brinkman number, thermal conductivity ratio, and nanoparticle volume fraction of the nanofluids, on the temperature distributions are investigated and analyzed for both heating and cooling processes. The heat transfer performance characterized by the Nusselt number is investigated based on the effects induced by these parameters. In the comparison between the models with and without viscous dissipation, it is found that the thermal performance of a microchannel is overrated when viscous dissipation is excluded in the analysis. It is concluded that these governing parameters are intimately interrelated in the flow and thermal analyses of nanofluids in microchannels. The interrelationship of the viscous dissipation effect and the nanoparticle volume fraction is examined in a contour deviation map of Nusselt numbers between the model with and without considering the viscous dissipation.  相似文献   

3.
A numerical three-dimensional flow and conjugate heat transfer in circular minichannel-based multi-row heat sink is presented in this article. Effects of geometrical parameters including channel dimensions, channel arrangements (inline or staggered), and the number of channel rows with a single-pass flow on the thermal performance of the heat sink are presented. The determination of the bottom surface temperature, average heat transfer coefficient, thermal resistance as well as the pressure drop was reported. The number of rows and the diameter of the circular channel for a constant Reynolds number were found to have a remarkable cooling effect on the heat sink. It was found out that in the case of using four channel rows with the channel diameter of 1?mm, the cooling capacity is 88.5?W/cm2 compared to 28?W/cm2 for a single row 1?mm diameter.  相似文献   

4.
《Energy Conversion and Management》2005,46(18-19):3091-3102
In this part of the study, consideration is given to thermally developing laminar forced convection in a pipe including viscous dissipation. The axial heat conduction in the fluid is neglected. Two different thermal boundary conditions are considered: the constant heat flux (CHF) and the constant wall temperature (CWT). Both the wall heating (the fluid is heated) case and the wall cooling (the fluid is cooled) case are considered. The distributions for the developing temperature and local Nusselt number in the entrance region are obtained. Results show that the temperature profiles and local Nusselt number are influenced by the Brinkman number (Br) and the thermal boundary condition used for the wall. Significant viscous dissipation effects have been observed for large Br.  相似文献   

5.
用数值方法分析了圆形热负荷作用面电器件散热器的结构参数对热阻的影响。定义了无量纲坐标及无量纲热阻R,得到了在不同几何参数条件下毕渥数Bi与无量纲热阻R的关系。在大量数据基础上拟合获得了Bi及散热器几何参数与R的关联式,该关联式不仅可以获得热阻随参数变化的趋势,而且能够直接预测散热器的热阻,揭示了热负荷作用面为圆形的电器件散热器散热特性。研究结果为使用这类散热器的设计提供了理论和计算依据。  相似文献   

6.
The slotted fin concept was employed to improve the air cooling performance of plate-fin in heat sinks. Numerical simulations of laminar heat transfer and flow pressure drop were conducted for the integral plate fin, discrete plate fin and discrete slotted fin heat sinks. It is found that the performance of the discrete plate fin is better than that of the integral continuum plate fin and the performance of slotted fin is better than that of the discrete plate fin at the same pumping power of the fan. A new type of heat sink characterized by discrete and slotted fin surfaces with thinner fins and smaller spaces between fins is then proposed. Preliminary computation shows that this type of heat sink may be useful for the next generation of higher thermal load CPUs. The limit of cooling capacity for air-cooling techniques was also addressed.  相似文献   

7.
Jianping Tu  Wei Shih  Henry Mak 《传热工程》2017,38(17):1429-1438
A concept of using energy storage material (ESM) or phase change material (PCM) to enhance the heat transfer dissipation by a conventional compact fin-based heat sink is demonstrated. An actual design is developed, fabricated, and tested to demonstrate the heat transfer enhancement. The heat sink is light weight (made with Aluminum) and miniature in size with a total fin length of 26 mm. Test results demonstrated that under a high peak load (4.4 W/cm2) and low duty power cycle (30/55 on/off ratio with a period of 85 sec), the peak temperature at the heating surface with the ESM/PCM heat sink is 5°C lower than that of a conventional heat sink. At the tip of the fin, the peak temperature with the ESM/PCM heat sink is 3°C lower than that of a conventional heat sink. When the external heat transfer coefficient increases (with increase air velocity), the impact of the PCM/ESM on the heat transfer performance is less. A numerical model, based on COMSOL, is developed to provide a theoretical understanding of the experimental observation.  相似文献   

8.
Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.  相似文献   

9.
《Applied Thermal Engineering》2007,27(14-15):2473-2482
The parallel-plain fin (PPF) array structure is widely applied in convective heat sinks in order to create extended surface for the enhancement of heat transfer. In the present study, for investigating the influences of designing parameters of PPF heat sink with an axial-flow cooling fan on the thermal performance, a systematic experimental design based on the response surface methodology (RSM) is used. The thermal resistance and pressure drop are adopted as the thermal performance characteristics. Various designing parameters, such as height and thickness of fin, width of passage between fins, and distance between the cooling fan and the tip of fins, are explored by experiment. Those parameters affect the structure arrangement, geometry of fins and the status of impinging jet from an axial-flow cooling fan installed over the heat sink. A standard RSM design called a central composite design is selected as experimental plan for the four parameters mentioned above. An effective procedure of response surface methodology (RSM) has been proposed for modeling and optimizing the thermal performance characteristics of PPF heat sink with the design constrains. The most significant influential factors for minimizing thermal resistance and pressure drop have been identified from the analysis of variance. The confirmation experimental results indicate that the proposed model is reasonably accurate and can be used for describing the thermal resistance and pressure drop with the limits of the factors studied. The optimum designing parameters of PPF heat sink with an axial-flow cooling fan under constrains of mass and space limitation, which are based on the quadratic model of RSM and the sequential approximation optimization method, are found to be fin height of 60 mm, fin thickness of 1.07 mm, passage width between fins of 3.32 mm, and distance between the cooling fan and the tip of fins of 2.03 mm.  相似文献   

10.
A numerical study has been carried out to optimize the thermal performance of a pin-fin heat sink. A pin-fin heat sink, which is placed horizontally in a channel, is modeled as a hydraulically and thermally anisotropic porous medium. A uniform heat flux is prescribed at the bottom of the heat sink. Cool air is supplied from the top opening of the channel and exhausts to the channel outlet. Comprehensive numerical solutions are derived from the governing Navier-Stokes and energy equations using the Brinkman-Forchheimer extended Darcy model and the local thermal nonequilibrium (LTNE) porous model for the region occupied by the heat sink. Results from this study indicate that the anisotropy in permeability and solid-phase effective thermal conductivity changes substantially with the variation of porosity. Optimum porosity for maximum heat dissipation depends on the pin-fin thickness, the pin-fin height, and the Reynolds number. A correlation for predicting the optimum porosity for a pin-fin heat sink is proposed. Generally, in the case of thin pin-fins the heat sink should be designed to have a high porosity, while in the case of thick pin-fins the heat sink should be designed to have a relatively low porosity.  相似文献   

11.
何为  丁愫 《热科学与技术》2021,20(2):134-140
水冷散热器在数据中心服务器CPU芯片冷却技术中发挥着重要的作用。如何获得高性能的散热效率成为了该领域关注的重点。针对一种翅柱式水冷散热器,用数值模拟的方法,通过改变翅柱的结构参数来优化散热器的散热性能以及流动特性。在相同的翅柱间距下,改变翅柱的直径和高度,在不同的入口流量下,研究其温度,努塞尔数,压降,摩擦系数,分析比较其综合系数对散热性能的影响,并对结果进行了实验验证。结果表明翅柱高度3.9mm,直径为0.9mm的散热器其综合系数最大  相似文献   

12.
The cooling performance of a plate‐fin‐type heat sink equipped with a cooling fan was investigated experimentally. The heat sink was 80 mm long, 43 mm wide, and 24 mm in height (including the 4‐mm‐thick base). The cooling fan was 40 × 40 × 15 mm and was set to direct the air flow vertically in the downstream half of the heat sink. We focused on the influence of the height (which varied from 5 to 20 mm) that the fan was set at, on the heat transfer coefficient of the heat sink. The maximum value of the heat transfer coefficient was achieved at a setting height of 5 mm. At this height, the volumetric heat transfer coefficient was 1.8 times as high as that in a parallel flow under the same fan power. This result indicates that the cooling performance of heat sinks with a cooling fan can be improved by using this kind of compact structure. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 512–520, 2001  相似文献   

13.
The effects of viscous dissipation, non-uniform heat source/sink, magnetic field, and thermal radiation on heat transfer characteristics of a thin liquid film flow over an unsteady stretching sheet are analyzed. A similarity transformation is used to reduce the governing time dependent momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations with the appropriate boundary conditions are solved by an efficient shooting algorithm with fourth order Runge–Kutta technique. The effects of the physical parameters on the flow and heat transfer characteristics are presented through graphs and analyzed. The numerical results for the wall temperature gradient (Nusselt number) are calculated and presented through tables. Also, the effects of the physical parameters on the heat transfer characteristics are brought out: suggestions are made for efficient cooling. Furthermore, the limiting cases are obtained and are found to be in good agreement with the previously published results.  相似文献   

14.
A theoretical analysis of the cooling effect of a heat sink is presented in this study. With the input data of Biot number, Bi, and heat transfer coefficient ratios, H and H *, the optimum heat transfer equation can be utilized to obtain the optimum length of fins in a heat sink, which affects the overall thermal effectiveness of the heat sink. This optimum equation is in transcendental form, which involves three dimensionless parameters, $\sqrt{\hbox{Bi}}$ S opt. , $\sqrt{\hbox{Bi}}$ H , and $\sqrt{\hbox{Bi}}$ H *. Finally, the thermal resistance of a heat sink is derived and examples are provided to illustrate the effect on the cooling performance of a heat sink under various design conditions.  相似文献   

15.
新型多孔铜微通道散热技术采用多孔铜微通道结构,增加热沉与冷却工质的接触面积,提高热沉的散热性能。利用单室金属-气体共晶定向凝固工艺,通过控制冷却速度、过热度、气压等工艺参数,从而制备优质的多孔铜材料。根据多孔铜微通道热沉散热原理,搭建散热性能测试平台,研究冷却工质流量、多孔铜材料的孔径和孔隙率、入口截面斜率角对多孔铜微通道热沉散热性能的影响规律。结果表明:增加冷却工质流量有利于提高多孔铜微通道热沉的散热性能;在恒定体积流量下,减小孔径有利于提高多孔铜微通道热沉的散热性能;当多孔铜孔隙率为30.8%时,多孔铜微通道热沉散热性能最佳;入口截面斜率角对多孔铜微通道热沉散热性能的影响较小。  相似文献   

16.
An analytical study on the viscous dissipation effect on entropy generation in laminar fully developed forced convection of water–alumina nanofluid in circular microchannels is reported. In the first-law analysis, closed form solutions of the temperature distributions in the radial direction for the models with and without viscous dissipation term in the energy equation are obtained. The results show that the heat transfer coefficient decreases with nanoparticle volume fraction largely in the laminar regime of nanofluid flow in microchannel when the viscous dissipation effect is taken into account. In the second-law analysis, the two models are compared by analyzing their relative deviations in entropy generation for different Reynolds number and nanoparticle volume fraction. When the viscous dissipation is taken into account, the temperature distribution is prominently affected and consequently the entropy generation ascribable to the heat transfer irreversibility is significantly increased. The increase of entropy generation induced by the increase of nanoparticle volume fraction is attributed to the increase of both the thermal conductivity and viscosity of nanofluid which causes augmentation in the heat transfer and fluid friction irreversibilities, respectively. By incorporating the viscous dissipation effect, both thermal performance and exergetic effectiveness for forced convection of nanofluid in microchannels dwindle with nanoparticle volume fraction, contrary to the widespread conjecture that nanofluids possess advantage over pure fluid associated with higher overall effectiveness from the aspects of first-law and second-law of thermodynamics.  相似文献   

17.
A large amount of waste heat generated in industrial production needs to be discharged by circulating cooling water systems. To save freshwater resources, freshwater cooling towers have been widely replaced by seawater cooling towers in coastal areas, but research on the thermal performance of seawater cooling towers is still relatively less. In this study, a detailed calculation model based on the heat/mass transfer process of seawater–air two-phase counterflow was established, and the reliability of the proposed model was verified. The computer program developed under the VC++ framework was used for the numerical solution of the model. The effects of five inlet parameters on the cooling efficiency and heat dissipation were studied. The simulation results showed that with the increase of salinity, the cooling performance was reduced. When the salinity increased by 10 g/kg, the outlet water temperature rose by about 0.13°C. The wet-bulb temperature increased by 1°C and the cooling efficiency increased by about 0.77%, while total heat dissipation was reduced by about 36.37 kW. When the air–water ratio increased, the cooling performance was improved, but the maximum cooling efficiency was affected by heat load. The change of dry-bulb temperature had little effect on the cooling performance. With the increase of water temperature, the cooling efficiency and heat dissipation increased. The calculation model and simulation results can provide practical guidance for the operation of seawater cooling towers.  相似文献   

18.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

19.
Due to highly effective thermal spreaders, the vapor chambers have been widely applied on the electronic cooling. An effective thermal spreader can achieve more uniform heat flux distribution and thus enhance heat dissipation of heat sinks. This work investigates the thermal performance characteristics plate-fin vapor chamber. Parametric studies including different operating operation of CPU, coolant types, working fluids, filled ratios, flow direction of coolants, heat sink configurations, and the effect of the relevant parameters on the cooling performance in terms of the thermal resistance was considered and discussed. The results showed that the relevant parameters have a significant influence on the thermal resistance of the vapor chamber.  相似文献   

20.
Leakage losses and ever-increasing power dissipation in the microprocessor are causing significant thermal, mechanical, and reliability problems. Conventional cooling methods are reaching their practical limits, and new methods of lowering the operating temperature of microprocessors are being explored. Microfluidics-based cooling schemes are one approach being considered. The implementation of microchannels for forced convection at the chip level shows much promise, as the effective heat transfer surface area and attainable heat flux are very favorable. A major design limitation to such an implementation is the pressure developed within such micro-flows and the stresses that could result. In this study, multiple discrete microchannel heat sink configurations are analyzed computationally and compared in a cooling capability sense, while total pressure drop across the flows is carefully considered. A single cooling channel over an energy source is split into two smaller channels, and so on, while total pressure drop is maintained constant, and specified such that all flows remain in the laminar regime. It is shown that for the configurations analyzed, there exists multiple-dependence optimum cooling configurations. In addition, it is shown that a slimmer design may be implemented with a relatively small effect on cooling capability. Furthermore, cooling capability dependence on total pressure drop of the flows is shown to be minimal for high-performing microchannel configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号