首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal energy storage is critical for reducing the discrepancy between energy supply and energy demand, as well as for improving the efficiency of solar thermal energy systems. Among the different types of thermal energy storage, phase-change materials (PCM) thermal energy storage has gained significant attention recently because of its high energy density per unit mass/volume at nearly constant temperature. This study experimentally investigates the using of a triplex tube heat exchanger (TTHX) with PCM in the middle tube as the thermal energy storage to power a liquid desiccant air-conditioning system. Four longitudinal fins were welded to each of the inner and middle tubes as a heat transfer enhancement in the TTHX to improve the thermal performance of the thermal energy storage. The average temperature of the PCM during the melting process in the TTHX with and without fins was compared. The PCM temperature gradients in the angular direction were analyzed to study the effect of the natural convection in the melting process of the thermal storage. The energy storage efficiency of the TTHX was determined. Results indicated that there was a considerable enhancement in the melting rate by using fins in the TTHX thermal storage. The PCM melting time is reduced to 86% by increasing of the inlet heat transfer fluid. The average heat storage efficiency calculated from experimental data for all the PCMs is 71.8%, meaning that 28.2% of the heat actually was lost.  相似文献   

2.
基于高温相变材料,对填充床储热系统中储热单元球体的储热性能进行了模拟研究.研究了不同传热流体温度和球体直径对球体储热性能的影响规律,对导热为主的相变储热过程与导热和自然对流共同作用的相变储热过程进行了比较分析,同时还探讨了高温辐射换热的影响.结果表明,相变时间随球体直径的增大而增大,随传热流体温度的增大而减小.当考虑相变区域自然对流时,总的相变时间显著减少,和单纯导热相比,完全相变时间缩短了近16%.在导热和自然对流的基础上加上辐射传热后可以看出,辐射换热强化了球体内的传热过程,加快了相变材料的熔化速度,强化了自然对流的作用.  相似文献   

3.
W. Saman  F. Bruno  E. Halawa 《Solar Energy》2005,78(2):341-349
The thermal performance of a phase change thermal storage unit is analysed and discussed. The storage unit is a component of a roof integrated solar heating system being developed for space heating of a home. The unit consists of several layers of phase change material (PCM) slabs with a melting temperature of 29 °C. Warm air delivered by a roof integrated collector is passed through the spaces between the PCM layers to charge the storage unit. The stored heat is utilised to heat ambient air before being admitted to a living space. The study is based on both experimental results and a theoretical two dimensional mathematical model of the PCM employed to analyse the transient thermal behaviour of the storage unit during the charge and discharge periods. The analysis takes into account the effects of sensible heat which exists when the initial temperature of the PCM is well below or above the melting point during melting or freezing. The significance of natural convection occurring inside the PCM on the heat transfer rate during melting which was previously suspected as the cause of faster melting process in one of the experiments is discussed. The results are compared with a previous analysis based on a one dimensional model which neglected the effect of sensible heat. A comparison with experimental results for a specific geometry is also made.  相似文献   

4.
A mathematical model for the overall exergetic efficiency of two phase change materials named PCM1 and PCM2 storage system with a concentrating collector for solar thermal power based on finite-time thermodynamics is developed. The model takes into consideration the effects of melting temperatures and number of heat transfer unit of PCM1 and PCM2 on the overall exergetic efficiency. The analysis is based on a lumped model for the PCMs which assumes that a PCM is a thermal reservoir with a constant temperature of its melting point and a distributed model for the air which assumes that the temperature of the air varies in its flow path. The results show that the overall exergetic efficiency can be improved by 19.0-53.8% using two PCMs compared with a single PCM. It is found that melting temperatures of PCM1 and PCM2 have different influences on the overall exergetic efficiency, and the overall exergetic efficiency decreases with increasing the melting temperature of PCM1, increases with increasing the melting temperature of PCM2. It is also found that for PCM1, increasing its number of heat transfer unit can increase the overall exergetic efficiency, however, for PCM2, only when the melting temperature of PCM1 is less than 1150 K and the melting temperature of PCM2 is more than 750 K, increasing the number of heat transfer unit of PCM2 can increase the overall exergetic efficiency. Considering actual application of solar thermal power, we suggest that the optimum melting temperature range of PCM1 is 1000-1150 K and that of PCM2 is 750-900 K. The present analysis provides theoretical guidance for applications of two PCMs storage system for solar thermal power.  相似文献   

5.
本文基于最小火积耗散热阻原理,在考虑相变材料导热热阻以及非稳态传热过程的基础上,对多级套管式相变蓄热系统的融化温度进行了数值优化,获得了最优融化温度分布。在此基础上,研究了相变材料导热系数和传热管长度对最优融化温度、火积耗散热阻和平均蓄热速率的影响。研究结果表明,与现有理论优化方法相比,本文提出的数值优化方法具有更好的适用性;优化后多级套管式相变蓄热系统可有效提高相变蓄热系统的平均蓄热速率,降低火积耗散热阻;随着相变材料导热系数增大和传热管长度增加,多级套管式相变蓄热系统最优融化温度的温差愈加明显,其强化传热性能呈上升趋势。  相似文献   

6.
Numerical modeling was performed to simulate the melting process of a fixed volume/mass phase-change material (PCM) in different shell-and-tube type latent thermal energy storage units with identical heat transfer area. The effect of liquid PCM natural convection (NC) on the latent heat storage performance of the pipe and cylinder models was investigated using a 3D numerical model with FLUENT software. Result shows that NC can cause a non-uniform distribution of the solid–liquid interface, which accelerates PCM melting rate. The PCM melting rate and heat storage rate in the horizontal cylinder model are higher than those in the horizontal pipe model because of the combined effects of heat conduction and NC. A comparative study was conducted to determine the effects of horizontal and vertical shell-and-tube models with different heat transfer fluid (HTF) inlets including the effects of NC. The results indicate that the vertical model with an HTF inlet at the bottom exhibits the highest PCM melting rate and heat storage rate for the pipe models. For the cylinder models, the horizontal model and the vertical model with an HTF inlet at the bottom can achieve nearly the same completed melting time. In addition, NC has minimal effect on any model with an HTF inlet at the top.  相似文献   

7.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

8.
A theoretical model has been developed for analysis and optimization of the solar system using phase change material (PCM). The later consists of a solar air heating collector coupled with a cylindrical storage tank which contains spherical capsules filled with a PCM. Energy and exergy analyses are carried out to understand the behavior of the system using single PCM or multiple PCMs. Numerical results show that the performance of the latent thermal storage system can be ameliored by the judicious choice of the melting temperature of the PCM.  相似文献   

9.
Yong Tae Lee 《传热工程》2018,39(12):1081-1090
In a latent heat thermal energy storage system, the shape of the container for encapsulating the phase change material (PCM) and the arrangement of the PCM vessels within the thermal storage tank have a high influence on the performance of the thermal storage tank. In the present study, a newly designed PCM container was used to investigate the effect of the arrangement of the packing module on the performance of the thermal storage tank. To reflect an actual situation, the system should be modeled using the unconstrained melting model, which includes a density difference between the solid and liquid PCM, and also the convective boundary condition with heat transfer fluid should be applied. The amount of deviation from a real situation was analyzed for simplified models of a constrained melting model and an isothermal boundary condition, which have been commonly used in most previous works. The horizontal arrangement of the packing module showed higher performance than the vertical arrangement. Compared to the unconstrained melting model, the constrained melting model underestimated melting by 50 min and 70 min for the horizontal and vertical arrangements, respectively. Compared to the convective boundary condition, the isothermal boundary condition overestimated melting by 115 min and 100 min for the horizontal and vertical arrangements, respectively.  相似文献   

10.
《能源学会志》2020,93(1):76-86
To explore thermal management integration in electric vehicles (EVs), a phase change materials (PCMs) thermal energy storage unit using flat tubes and corrugated fins is designed. The investigation focuses on the thermal characteristics of the PCM unit, such as the temperature variation, heat capacity, and heat transfer time, etc. Meanwhile, the heat storage and release process will be influenced by different inlet temperature, liquid flow rate, melting point of the PCM, and the combination order of the units. Under the same inlet temperature and flow rate condition, the PCM unit with higher melting point enters the latent heat storage stage slowly and enters the phase change melting release stage quickly. Furthermore, the heat storage and release rates increase with increasing liquid flow rates, but the effects are diminishing in the middle and later periods. The multiple PCM units with different melting temperatures are cascaded to help recycle low-grade heat energy with different temperature classes and exhibit well heat storage and release rates.  相似文献   

11.
Abstract

A latent heat thermal energy storage system with phase change material (PCM) is numerically studied. To enhance the heat transfer inside the system, a highly conductive metal foam is employed with ceramic nanoparticles. The latter method of enhancement leads to a new class of material called Nano-PCM. The system under investigation is a 70-L tank filled up with pure PCM or Nano-PCM and several pipes are situated where the heat transfer fluid (HTF) flows. The pipe surfaces are assumed at constant temperature above the PCM melting temperature to simulate the heat transfer from the HTF. The enthalpy-porosity theory is applied to simulate the PCM phase change, while the porous media formulation is assumed to describe the metal foam behavior. The nano-PCM is modeled with single-phase model where the properties are the weighted-average between the fluid base and the nanoparticles. The simulations are accomplished for charging-discharging process at different porosities and nanoparticle concentration. The results are given in term of average melting fraction evolution, average temperature as function of time, average stored energy. The metal foam significantly improves the heat transfer between PCM and HTF respect to the addition of nanoparticles, reducing the charging and discharging time more than one order of magnitude.  相似文献   

12.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

13.
This paper presents a detailed review of effect of phase change material (PCM) encapsulation on the performance of a thermal energy storage system (TESS). The key encapsulation parameters, namely, encapsulation size, shell thickness, shell material and encapsulation geometry have been investigated thoroughly. It was observed that the core-to-coating ratio plays an important role in deciding the thermal and structural stability of the encapsulated PCM. An increased core-to-coating ratio results in a weak encapsulation, whereas, the amount of PCM and hence the heat storage capacity decreases with a decreased core-to-coating ratio. Thermal conductivity of shell material found to have a significant influence on the heat exchange between the PCM and heat transfer fluid (HTF). This paper also reviews the solidification and melting characteristics of the PCM and the effect of various encapsulation parameters on the phase change behavior. It was observed that a higher thermal conductivity of shell material, a lower shell size and high temperature of HTF results in rapid melting of the encapsulated PCM. Conduction and natural convection found to be dominant during solidification and melt processes, respectively. A significant enhancement in heat transfer was observed with microencapsulated phase change slurry (MPCS) due to direct surface contact between the encapsulated PCM and the HTF. It was reported that the pressure drop and viscosity increases substantially with increase in volumetric concentration of the microcapsules.  相似文献   

14.
Storage and transport of temperature sensitive products have become an important issue worldwide. The enhancement of thermal performance of cold application is under investigation and implementing thermal energy storage (TES) systems by using phase change materials (PCM) is one of the solutions to better storage. Hence, the selection of the suitable PCM for each specific application is an important matter. In this paper, a TES system using PCM for low temperature applications such as commercial freezers is studied. A set of PCM formulations based on ammonium chloride – water binary system were tested and analyzed to provide information useful for the selection of PCM with regards to their melting range, latent heat, stability under cycling, and cost. Thermal cycling was conducted to determine the thermal reliability of the PCM and the thermal properties were determined using differential scanning calorimetry (DSC) analysis.  相似文献   

15.
选择KNO3/NaNO3二元体系按照质量比4∶6制备共晶盐,对共晶盐进行了熔点及熔化潜热的测量;将石墨泡沫这一新型材料作为强化基体,共晶盐作为相变材料(PCM),采用熔融浸渗法制备了适用于太阳能热发电系统储能装置的石墨泡沫/共晶盐复合相变材料。采用扫描电镜对复合相变材料表面的微观结构进行了表征,并对其熔点、潜热、等效导热系数等热物性参数进行了测试。结果表明:共晶盐与石墨泡沫复合效果比较理想;复合前后共晶盐的熔点和潜热几乎没有发生变化;复合相变材料的等效导热系数得到了显著提升,石墨泡沫对相变材料起到了导热强化作用,满足高温蓄热的要求。  相似文献   

16.
In this paper, a simple two‐dimensional theoretical model based on enthalpy formulation of a latent heat storage system has been developed to study the effects of thermo physical properties of heat exchanger container materials on the thermal performance of the storage system. Numerical results show that thermal conductivity, specific heat and density of the heat exchanger container materials increases, the melting time of the PCM decreases. Numerical results also show that high value of thermal conductivity of the heat exchanger container materials did not make significant contribution on the melt fraction. It is also found that initial temperature of the PCM does not have very important effects on the melting time, while the boundary wall temperature play an important role during melting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl26H2O was used as PCM in thermal energy storage with a melting temperature of 29 °C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18–23% of total daily thermal energy requirements of the greenhouse for 3–4 h, in comparison with the conventional heating device.  相似文献   

18.
基于焓法模型对水平管壳式相变蓄热装置热性能的增强进行研究,首先分析蓄热过程中传统管壳式装置内材料的传热及流动机理;然后引入椭圆元素并对比椭圆内管及外壳的强化传热效果;最后对热源温度、相变材料导热系数及初始温度对装置热性能的作用规律进行探讨。结果显示,椭圆外壳的强化传热效果优于内管,同等条件下,长短轴之比为2的椭圆外壳可使蓄热时间缩短53.5%。热源温度升高,椭圆外壳的强化传热效果进一步增强,相变材料的导热系数及初始温度对装置热性能的影响较小。  相似文献   

19.
This paper presents a numerical study on the constrained melting of phase change material (PCM) inside a sphere to investigate the effect of various factors on the melt fraction. A mathematical model of melting processes of the PCM inside a sphere is developed. And experiments are conducted to verify the numerical method. On the basis of the model, the effects of the sphere radius, the bath temperature, the PCM thermal conduction coefficient and the spherical shell material on the melt fraction of PCM inside a sphere are discussed. The results show that the PCM inside a sphere melts fast as the sphere radius is small, the bath temperature increases, and the PCM thermal conductivity is high. And the metal shell with high thermal conductivity should be adopted preferentially. The present study provides theoretical guidance for the design and operation of the phase change heat storage unit with sphere containers.  相似文献   

20.
Latent heat thermal storage units span a wide and varied range of applications in the domestic, industrial and space based activities. Numerical investigations on the performance enhancement of a solar dynamic latent heat thermal storage (LHTS) unit employing multiple phase change materials (PCM) and fins are made. The LHTS unit has been studied for the charging mode alone. Enthalpy based formulation of the energy equations governing the behaviour of the LHTS system has been made and compared with the response of a single PCM unit. The governing conjugate equations have been solved employing finite difference techniques. The results show an appreciable enhancement in the rate of melting of PCM and nearly uniform exit temperature of heat transfer fluid (HTF) in the multiple PCM LHTS unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号