首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Applied Thermal Engineering》2002,22(17):1931-1941
In flooded-type tube bundle evaporators with smooth tubes and general tube gaps, both wall superheat and heat flux are generally quite low and boiling cannot occur on the heated tubes. But when the tube gap is quite small or the enhanced heat transfer tubes are employed, the incipient boiling can occur at low heat flux levels and results in a significant heat transfer enhancement effect. This study investigates experimentally enhancement effects by the restricted space comprising the compact tube bundle and the enhanced tubes for boiling heat transfer of pure water and salt-water mixtures under atmospheric pressure. The experimental results show that the small tube gaps can greatly enhance boiling heat transfer for the compact enhanced tube bundle.  相似文献   

2.
ln desalinization devices and some heat exchangers making use of low‐quality heat energy, both wall temperatures and heat fluxes of heated tubes are quite low and generally cannot cause boiling in flooded‐type tube bundle evaporators with a large tube spacing. But when the tube spacing is very small, boiling in restricted spaces can occur and induce a higher heat transfer than that of a falling film or pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes, and heating status of tubes as well as surface status (smooth and roll‐worked) on boiling in restricted spaces in compact horizontal tube bundle evaporators under atmospheric pressure. The experimental results provide a restricted space boiling database for water in smooth and enhanced surface tube bundles. Of particular importance is information concerning the influence of tube spacing of flooded‐type tube bundle evaporators, especially for the case of zero pitch, when the neighboring tubes are contacting each other. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 394–401, 2001  相似文献   

3.
采用紧凑满液型蒸发换热器,利用水平传热管叉排管束狭窄空间内早期沸腾强化换热机理将中小热负 荷条件下的自然对流换热转化为旺盛核沸腾换热,换热性能大大优于传统的降膜式蒸发换热器。对水平传热管 管束在受限空间内沸腾强化换热进行实验研究,确认了紧凑满液式水平管蒸发换热器具有良好的换热性能,传 热管在管束中的位置对换热特性已经没有明显影响,随着压力增加,受限空间内沸腾强化换热强化效果显著增 加。  相似文献   

4.
刘振华  廖亮 《太阳能学报》2007,28(2):146-150
提出了一种新型紧凑式顺排光滑管束组成的满液式蒸发换热器。在低压条件下对水平光滑顺排管束的小空间内沸腾强化换热特性进行了实验研究,确认了管距、管位置和运行压力对强化换热性能的影响。实验表明存在一个能得到最大强化换热效果的最佳管距,这一最佳管距接近沸腾气泡的脱离直径。压力对强化换热效果也有重要影响:随着压力降低,强化换热效果也逐步减弱。实验结果对高效节能型蒸发换热器设计提供了设计基础。  相似文献   

5.
满液型海水淡化蒸发器的换热特性研究   总被引:3,自引:2,他引:3  
海水淡化装置,太阳能或余热吸收式制冷机中的蒸发换热器目前使用管排外降膜式蒸发方式。如将传热管束紧凑排列置于饱和状态液体中则变为满液式蒸发换热器,利用传热管束间受限空间内早期沸腾强化换热机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热,在间隙尺寸适宜时,其换热性能可能优于降膜式蒸发换热器。该研究以盐水为实验工质,对紧凑传热管束受限空间的沸腾换热进行了实验研究,确认了满液式蒸发换热器也具有很好的换热性能,在中小热负荷条件下甚至超过降膜式蒸发换热器。  相似文献   

6.
刘振华  易杰 《太阳能学报》2002,23(6):795-798
采用满液式蒸发换热器,利用强化传热管管束受限空间内早期沸腾强化机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热。其换热性能大大优于降膜式蒸发换热器。对紧凑型滚压表面传热管管束在受限空间内沸腾强化换热进行实验研究,确认了满液式蒸发换热器使用紧凑型滚压强化管束具有良好的换热性能,在小管间距时有显著的沸腾换热复合强化效应。  相似文献   

7.
An experimental investigation was carried out on the boiling heat transfer enhancement of water on plain tubes in compact staggered tube-bundle evaporators under atmospheric and sub-atmospheric pressures. The experiment investigated the effects of the tube spacing and positioning and the test pressure on the boiling heat transfer characteristics in restricted spaces of compact tube bundles. The experimental results indicated that for compact tube bundles, the effect of the tube spacing is very significant on the boiling heat transfer. The boiling heat transfer has a maximum enhancement when the tube spacing is so selected as to take an optimum value. The enhanced heat transfer efficiency for the compact bundles would gradually decrease as the test pressure was reduced.  相似文献   

8.
An experimental test rig for study of the pooling-boiling heat transfer performance of pure and mixed refrigerants was designed and established. The test section is a horizontal tube bundle evaporator with nine mechanically fabricated porous surface tubes in a triangular layout. With this test system, the heat transfer coefficients of the nucleate boiling in the evaporator were measured for R22, R407c, and R410a. Extensive experimental measures were made for those pure and mixed refrigerants at different heat fluxes from 10 kW m?2 to 43 kW m?2 at saturation temperature of 9°C. Comprehensive measured data are presented in this paper. From experimental results, it is found that the pool boiling heat transfer coefficient increases with increasing the heat flux. It is also found that boiling heat transfer coefficients for R410a are 1.25–1.81 times and 6.33–7.02 times higher than that for R22 and R407c, respectively. The experimental correlations for the pool boiling heat transfer coefficients of R22, R407c, and R410a on the present enhanced tubes bundle are developed. The thermal resistance analysis reveals that the thermal resistance of the water side is a controlling factor for the evaporator for R22 and R410a. However, for R407c, the thermal resistance of the refrigerant side is slightly higher than that of the water side. To further improve the overall heat transfer coefficient in the evaporator of R22 and R410a, the enhancement for both the inside and outside is equally important, and the effectively enhanced boiling surface must be developed for the evaporator of R407c.  相似文献   

9.
紧凑传热管束受限空间内沸腾强化换热特性   总被引:1,自引:0,他引:1  
海水淡化装置以及太阳能或余热吸收式制冷机中的蒸发换热器,采用管排外降膜式蒸发方式,它具有很多优点,但管间距离较大,以致尺寸较大,供液方式较复杂。将传热管束紧凑排列置于饱和状态液体中,将其变为满液式蒸发换热器,利用传热管束间受限空间内早期沸腾强化机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热,在间隙尺寸适宜时,其换热性能可能优于降膜式蒸发换热器。对紧凑传热管束在受限空间内沸腾强化换热进行实验研究,确认了满液式蒸发换热器具有良好的换热性能,在中小热负荷条件下甚至超过降膜式蒸发换热器。  相似文献   

10.
In spray type evaporators using a conventional overhead spray method, a dry-out phenomenon occurs on the lower surface of the evaporator tubes under high surface heat flux conditions, and thus the heat transfer performance of the evaporator system is seriously impaired. This study shows that in a compact triangular-pitch shell-and-tube evaporator, the dry-out problem can be delayed through the use of an interior spray method, in which each heater tube within the bundle is sprayed simultaneously by two nozzles. The experimental results reveal that the shell-side heat transfer coefficients obtained using the proposed spray technique are significantly higher than those achieved in a conventional flooded type evaporator. The results also show that the heat transfer performance improves as the saturation temperature decreases since the density and thermal conductivity of the sprayed liquid increase. Finally, it is shown that for a constant heat flux and saturation temperature, the heat transfer coefficient increases with an increasing refrigerant mass flow rate.  相似文献   

11.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

12.
The results of an experimental investigation on nucleate boiling heat transfer in an electrically heated 5 × 3 in-line horizontal tube bundle under pool and low cross-flow conditions of saturated water near atmospheric pressure are presented here. It is observed that the heat transfer coefficient is minimum on bottom row tubes and increases in the upward direction with maximum values on top row tubes. Also, heat transfer coefficient on central column tubes was found to be slightly higher than those on the corresponding side tubes. Further, a Chen-type relation has been used to determine the local boiling heat transfer coefficient on a tube in a heated tube bundle.  相似文献   

13.
An experimental study of the tube bundle effect on heat removal capabilities in complete condensation mode of a passive condenser was performed. A full scale test section, with four condenser tubes, was designed and constructed to simulate operating conditions of a passive containment cooling system. For complete condensation analysis, pure steam was supplied to the test section and heat transfer properties were measured for pressure from 100 to 280 kPa. The condensation heat transfer results were similar to the findings from single tubes, except for a slightly higher condensate mass flux. This was determined to be a result of turbulent mixing in the secondary boiling water caused by the tube bundle.  相似文献   

14.
A new falling film heat transfer test facility has been built for the measurement of local heat transfer coefficients on a vertical array of horizontal tubes, including flow visualization capabilities, for use with refrigerants. Presently, the facility has been used for evaporation tests on four types of tubes at three tube pitches and three nominal heat flux levels for R-134a at 5°C. A new method for determining local heat transfer coefficients using hot water heating has been applied, and test results for a wide range of liquid film Reynolds numbers have been measured for arrays made of plain, Turbo-BII HP, Gewa-B, and High-Flux tubes. The results show that there is a transition to partial dryout as the film Reynolds number is reduced, marked by a sharp falloff in heat transfer. Above this transition, the heat transfer coefficients are nearly insensitive to the film Reynolds number, apparently because vigorous nucleate boiling is always seen in the liquid film. The corresponding nucleate pool boiling data for the four types of tubes were also measured for direct comparison purposes. Overall, about 15,000 local heat transfer data points were obtained in this study as a function of heat flux, film Reynolds number, tube spacing, and type.  相似文献   

15.
通过对五种尺寸的窄空间试验元件分别以水和乙醇做工质进行实验。研究了窄空间间距、窄空间尺寸、不同工质及不同热流密度对窄空间沸腾性能的影响。结果表明:当窄空间尺寸与热流通等因素组合恰当时。其换热系数可比大空间池沸腾提高3~6倍;临界热流密度有所降低。  相似文献   

16.
Nucleate pool boiling heat transfer from plasma coated copper tube bundles with porous copper (Cu) immersed in saturated R-134a was experimentally studied. The bundle is composed of 15 tubes (of which the number of heated/instrumented tubes was varied) arranged in four different configurations with a pitch-to-diameter ratio of 1.5. The influences of various parameters, for instance, bundle arrangements and heat flux were clarified. Tests were conducted with both increasing and decreasing the heat flux. The data presented indicated that at low heat fluxes, the vertical-in-line tube bundles have the highest bundle factor. A configuration factor was proposed which can be used to characterize the geometric arrangements of the bundles.  相似文献   

17.
Nucleate pool boiling of refrigerants is of important application in the flooded evaporator of refrigeration and air-conditioning system. Many surface geometries involve machined porous surface have been adopted to enhance the nucleate pool boiling heat transfer of refrigerants. Nucleate pool-boiling performance of R134a and R142b outside a horizontal bank of twisted tubes with machined porous surface (T-MPS tubes) was investigated in this paper. The experimental results showed that the T-MPS tube bank could enhance boiling heat transfer evidently. The enhancement ratios of R134a from the T-MPS tube bank were 1.4–1.7 and the maximum enhancement ratio of R142b could reach up to 4.4. Analyzing the tube bank effects of boiling heat transfer for R134a and R142b, the overall trend showed that the boiling heat transfer performance of the T-MPS tube bank was inferior to that of single T-MPS tube slightly.  相似文献   

18.
An experimental study is carried out for enhancement of falling film evaporation heat transfer of pure water and water/salt mixtures on horizontal smooth tube and two kinds of structured tube bundles under atmospheric pressure. The experimental results show that the low-cost roll-worked tube can greatly enhance the evaporation heat transfer performance of the falling film, and make it comparable to that of expensive commercial enhanced tubes such as GEWA-T tubes, TE tubes and HF tubes, even at low and moderate heat flux levels. The average evaporation heat transfer coefficients for the roll-worked tube bundle are basically independent from the parameters tested such as flow and heating conditions, salt-concentrations, as well as geometries of the tube bundles. The present experimental data result in a constant heat transfer coefficient; α≈20 kW/m2 K, in the convective heat transfer range of the heat fluxes <105 W/m2.  相似文献   

19.
《传热工程》2012,33(9):828-834
Experiments were conducted for pool boiling on the outside of 8 × 3 (eight rows and three columns) plain and coated tube (surface roughness = 8.279 μm) bundles for three different pitch distances with the distinct objective to study the behavior and the enhancement of boiling heat transfer in horizontal staggered tube bundles (of plain and coated tubes for different equilateral triangular arrangements) with heat flux values ranging from ~12 to 45 kW/m2. At higher heat fluxes, coated and plain tube bundles had almost similar bundle average heat transfer coefficients at a given pitch distance, while at lower heat fluxes, the coated tube bundles have higher bundle average heat transfer coefficients as compared to that of the plain tube bundle. The coated tube bundles with the minimum pitch to diameter ratio of 1.4 exhibited the maximum bundle average heat transfer coefficients. The present study concludes that the bundle factor needs to be considered in the design of flooded evaporators.  相似文献   

20.
Local test results for two enhanced condensing tubes (next-generation versions of the Wieland Gewa and Wolverine Turbo enhanced condensing tubes) are obtained for refrigerants R-134a and R-236fa on the center row of a three row-wide tube bundle. The “bundle effect” on the heat transfer performance of the test section is observed and described. New predictive methods for falling film condensation on bundles are proposed, based on a modification of the previous vertical single-row method with condensate slinging. The modifications performed to the experimental setup to allow for bundle tests are described. For two types of enhanced tubes and two refrigerants, the local heat flux is correlated as a function of condensation temperature difference, the film Reynolds number, the tube spacing, and liquid slinging effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号