首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This study aims to further develop a model of the group contribution type that can predict the solubility of mixtures of HFC working fluids and pentaerythritol ester compressor oils. The investigation is based on solubility data for 20 systems of five different HFCs in four different pentaerythritol esters. First, five different activity factor-based thermodynamic models were investigated to determine to what extent they can describe the solubility data. Two promising models were selected and extended with group contribution parameters to be able to predict solubility data. The first model, a modified Flory–Huggins based predictive model (termed MFH), needs only 15 general parameters to describe the data with a relative deviation of less than 3.4%. The second model, a predictive Unifac model with an extended temperature dependence, needs 33 general parameters to describe the solubility data for the 20 systems with a relative deviation of less than 3.5%.  相似文献   

2.
The concentration of oil in refrigerants (while in liquid state) can be measured with an acoustic velocity sensor. The transit time for an acoustic signal can be related to the oil concentration and temperature of the liquid mixture. The performance of the sensor is dependent on the properties of the oil and refrigerant, and their miscibility. In general, a thorough calibration becomes necessary. It is shown in this paper that for concentrations less than 10%, an approximation can be made for the estimate of concentration hence eliminating the need for an elaborate calibration procedure.  相似文献   

3.
The optimisation of a jet cooling system using refrigerant mixtures as substitutes of pure refrigerants has been investigated. A steady-state simulation program, for given temperatures of the sources, integrating simple models of each component has been developed. A Peng-Robinson equation of state assuming equality of the fugacities of the two phases was used to model the thermodynamic properties of the vapour and liquid-vapour equilibrium. The refrigerants investigated in this study are: the pure refrigerants R142b, R152a, RC318, R124, R134a, R22 and the binary refrigerants R22/RC318, R22/R142b, R22/R124, R22/R152a, R22/R134a, R134a/R142b, R152a/R142b and R134a/R152a. Results show that the use of a binary mixture does not always increase the performance of system. Generally, when the mixture is strongly zeotropic (e.g.: R22/RC318), the cooling efficiency of the system decreases. However, when the mixture is mildly zeotropic (e.g. R134a/R142b) or almost azeotropic (e.g. R134a/R152a), efficiency and energetic efficiency increase.  相似文献   

4.
In this paper, pressure drop through a capillary tube is modeled in an attempt to predict the size of capillary tubes used in residential air conditioners and also to provide simple correlating equations for practicing engineers. Stoecker's basic model was modified with the consideration of various effects due to subcooling, area contraction, different equations for viscosity and friction factor, and finally mixture effect. McAdams' equation for the two-phase viscosity and Stoecker's equation for the friction factor yielded the best results among various equations. With these equations, the modified model yielded the performance data that are comparable to those in the ASHRAE handbook. After the model was validated with experimental data for CFC12, HFC134a, HCFC22, and R407C, performance data were generated for HCFC22 and its alternatives, HFC134a, R407C, and R410A under the following conditions: condensing temperature; 40, 45, 50, 55°C, subcooling; 0, 2.5, 5°C, capillary tube diameter; 1.2–2.4 mm, mass flow rate; 5–50 g/s. These data showed that the capillary tube length varies uniformly with the changes in condensing temperature and subcooling. Finally, a regression analysis was performed to determine the dependence of mass flow rate on the length and diameter of a capillary tube, condensing temperature, and subcooling. Thus determined simple practical equations yielded a mean deviation of 2.4% for 1488 data obtained for two pure and two mixed refrigerants examined in this study.  相似文献   

5.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

6.
A 1-D analysis for the prediction of ejector performance at critical-mode operation is carried out in the present study. Constant-pressure mixing is assumed to occur inside the constant-area section of the ejector and the entrained flow at choking condition is analyzed. We also carried out an experiment using 11 ejectors and R141b as the working fluid to verify the analytical results. The test results are used to determine the coefficients, ηp, ηs, φp and φm defined in the 1-D model by matching the test data with the analytical results. It is shown that the1-D analysis using the empirical coefficients can accurately predict the performance of the ejectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号