首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在焦炭燃烧过程中,焦炭颗粒会对产生的氮氧化物起到一定的异相催化还原作用,但其机理仍不明确。基于焦炭颗粒内部有不同碳基和发达的孔隙结构,根据焦炭颗粒在富氧气氛下燃烧的特性,建立了焦炭氮转化的分子动力学模型和多种气体传质模型。使用FORTRAN语言编程模拟了不同富氧气氛下粒径为100μm的单颗粒焦炭的燃尽过程。结果表明:燃烧初期颗粒内部NO出现短暂的积聚现象,颗粒内部的还原能力较弱,随着反应的进行及温度的升高,还原能力增强,由于缺氧而产生了CO气体,有利于NOx的还原。对比了环境温度为1 200℃时,O2和CO2的体积分数比分别为20∶80,25∶75,30∶70的不同气氛下焦炭颗粒内部NO,CO和N2等气体的体积分数,表明O2和CO2的体积分数比为25∶75的气氛是最佳气氛,既保证了焦炭颗粒的高效燃烧,又有利于增强焦炭颗粒的还原能力。  相似文献   

2.
利用烧结烟气循环流化床燃烧的深度净化技术,可低成本、高效地实现烧结烟气中污染物的超低排放。为了探究该技术中循环流化床密相区内焦炭还原NO的机理,以焦作无烟煤所制焦炭为实验对象,利用高温立式管式炉实验台模拟循环流化床密相区,在750℃~950℃温度下,研究烧结烟气中分别加入组分CO,CO2,O2时,焦炭还原NO的转化率随时间变化规律。结果表明:在无O2通入的反应条件下,随着反应温度的提高,焦炭对NO的还原率逐渐增加;CO的加入提升了焦炭对NO的还原率,在反应温度为900℃时,加入体积分数为0.4%的CO可最大提升17%的NO还原率;CO2的加入则抑制了焦炭对NO的还原率,在反应温度为950℃时,加入体积分数为10%的CO2使得NO还原率最大降低了21%;O2的加入明显抑制了焦炭对NO的还原效果,在反应温度为950℃,通入气体中体积分数为13%的O2时,NO的还原率下降至31%,且明显缩短了焦炭的还原时间。研究结果可为烧结烟气循环流化床燃...  相似文献   

3.
在模拟水泥预分解炉装置上研究污泥燃烧过程中还原性气体的产生及其对NO的还原,并系统研究了O2浓度(体积分数为0~5%)对还原性气体产生及NO还原的双重影响。TG-FTIR特征分析表明,污泥燃烧产生的还原性气体主要为HCN、NH3、CO和CH4。进一步实验研究发现O2浓度对HCN和NH3的产生有明显影响,HCN和NH3在O2体积分数为3%时产生速率最大。同时,O2浓度对污泥燃烧还原NO有较大影响。在污泥燃烧温度为900℃,烟气中CO2体积分数为25%、NO浓度为600mg/m3、SO2浓度为200mg/m3、O2体积分数为3%时,NO还原率可达到最大(55.8%)。通过还原性物质(NH3、CO、CH4和污泥焦)对NO的还原实验研究进一步发现,NH3和CO是污泥燃烧过程中NO还原的关键物质,且NH3对NO的还原随着O2浓度的增加而增加,而CO对NO的还原受O2浓度的限制。综合分析表明,O2浓度对污泥燃烧NO还原的影响主要是由NH3的产生速率差异、NH3和CO对NO的还原起主导作用且受O2浓度影响较大等多种因素综合导致。采用污泥作为还原剂进行NO还原是一种高效的方法,在水泥生产中可通过控制O2浓度获得较高的NO还原率。  相似文献   

4.
为使CFB锅炉达到NO_x原始超低排放,需要更加深入地理解煤炭燃烧过程中NO_x生成和还原机理,其中焦炭对NO_x的还原(NO_x-char反应)被认为是CFB含氮反应体系中最重要的环节之一.综述了文献中对NO_x-char反应的研究结果 ,围绕基本反应过程、焦炭中矿物杂质作用和影响因素三个部分,较为全面地阐述了焦炭表面NO_x还原过程.研究表明,碳原子除可直接作为还原反应物外,还可为CO,H_2,NH_3等还原性气体提供吸附表面从而间接还原NO_x,同时焦炭中的K,Fe,Ca等具有催化活性的矿物杂质能明显促进NO_x-char反应.多种还原作用共同存在使得NO_x-char反应的影响因素众多,包括煤种、热解条件、反应温度、焦炭粒径、碳燃尽率、CO/O_2/H_2O/SO_2等环境气体、焦炭中矿物杂质含量和化学组成等.另外,很多情况下这些因素并非独立作用,而是相互影响,且常在不同条件下对NO_x还原表现出"促进-抑制"两重性质.未来还需更加深入地研究焦炭表面NO_x反应体系,特别是定量描述不同影响因素的作用,建立CFB全炉膛NO_x排放模型,从而为深度挖掘循环流化床技术的低氮燃烧潜力奠定理论基础.  相似文献   

5.
采用流化床反应器,研究富水蒸气条件下酒糟燃烧的NO排放特性。结果表明,增加过量空气系数和升高燃烧温度,NO排放浓度升高;对送入燃烧反应器的气体中添加水蒸气模拟高水分燃料燃烧有效地降低了酒糟燃烧的NO排放浓度及总排放量,且在适当条件下可减少NO排放约46%(质量)。酒糟灰分中的金属氧化物对NO的还原有催化作用,且随着温度的升高变强。在含H2或CO的N2气氛中,灰分对NO催化还原作用更明显。水蒸气本身对NO没有明显还原作用,说明水蒸气是通过与碳氢化合物反应生成还原性气体,如H2和CO,从而在酒糟灰催化作用下强化NO的还原。  相似文献   

6.
利用Aspen Plus软件对某褐煤的预干燥及燃烧过程进行模拟分析,研究干燥介质种类、干燥介质温度和干燥介质流量对干燥特性的影响,过量空气系数、空气预热温度和过氧系数对有害燃烧产物产率的影响。结果表明,提高干燥介质温度和增加干燥介质流量都利于褐煤的干燥,而干燥温度的影响更加明显。提高空气预热温度会使燃烧产物中的NO和NO_2产量增大;过量空气系数大于1时,过量空气系数增大会明显降低燃烧产物中NO和CO的产量;过氧系数大于1时,过氧系数增大会明显降低燃烧产物中CO的产量,而NO的产量会增加。褐煤燃烧过程有害燃烧产物的Aspen Plus数值模拟将对褐煤的高效清洁利用提供参考数据。  相似文献   

7.
随着水泥行业“超低排放”的推进,NOx排放要求逐步向100mg/m3甚至50mg/m3看齐。水泥窑碳基脱硝通过控制煤粉燃烧产生焦炭和CO还原NOx,具有无须添加脱硝剂、避免氨逃逸、与生产流程结合良好、改造和运行成本低的优势,可作为水泥行业实现“超低排放”的辅助工艺。本文首先介绍了碳基脱硝的主要实施方式,包括回转窑低氮燃烧、分解炉分级燃烧和增设还原区等。然后讨论了焦炭和CO还原NOx的特性和机制。焦炭还原效果与其比表面积和活性位点有关。CO还原反应可在无催化条件下发生,但CO体积分数小于1%时效果可以忽略。焦炭、CaO和煤灰等可作为催化剂,将CO还原NO的温度窗口下限从900℃降低至600~800℃。最后综述了CO对选择性非催化法(SNCR)的影响及其机制,认为碳基脱硝与氨基脱硝具有耦合协同潜质。水泥窑碳基脱硝的进一步研究可以关注以下方面:在更为全面和系统的工况下评价脱硝特性,试验和理论结合明确脱硝机制,开发碳基与氨基协同脱硝技术等。  相似文献   

8.
张国祥  陈晓晖 《化工进展》2018,37(12):4654-4661
CO广泛存在于燃煤烟气及汽车尾气中,利用未完全燃烧的CO催化还原NO可同时脱除NO和CO,过程中催化剂起着决定性作用。本文对近年来含氧条件下CO催化还原NO的研究成果进行了系统梳理,重点关注了Pd系、Ir系、Cu系、其他贵金属及金属氧化物催化剂的研究进展,分析了催化剂制备方法、掺杂改性及反应条件对催化性能的影响,同时考察了O2浓度、H2O以及SO2对催化反应的影响,总结并对比了不同体系催化剂的活性位点及其催化机理,指明了O2在催化还原过程中的抑制机理,得出了几种体系催化剂催化CO还原NO的活性顺序。最后,针对富氧条件下CO催化还原NO所存在的问题和难点,提出深入研究O2抑制机理、降低贵金属用量、添加活性助剂是今后的研究方向。  相似文献   

9.
利用热重-红外联用技术(TG-FTIR)研究了芒草与褐煤共热解,并与玉米秸秆和褐煤共热解进行了比较。结果表明:共热解过程分为3个阶段,即预热干燥阶段、挥发分析出阶段和炭化阶段;由动力学分析及加权分析可知,芒草或玉米秸秆与褐煤共热解均具有协同作用,均可促进褐煤的热解,芒草与褐煤共热解反应更易发生;共热解协同作用随着生物质掺混比(质量比)的增加而增强,玉米秸秆掺混比变化对协同作用的影响更为明显;由红外分析可知,芒草与褐煤共热解可以降低褐煤的热解温度,促进褐煤的热解反应;芒草与褐煤共热解过程中CH_4,CO_2和CO的析出规律,在低温段时与芒草热解过程中三种气体的析出规律相似,在高温段时是芒草和褐煤综合作用的结果;当芒草与褐煤的掺混比为1∶2时,掺混芒草能有效优化热解气的组分,提高CH_4和CO的体积分数。玉米秸秆与褐煤共热解过程中CH_4,CO_2和CO的析出规律与玉米秸秆热解过程中三种气体的析出规律相似,几乎不受褐煤影响,其受掺混比的影响较小。  相似文献   

10.
以椰壳活性炭为载体,采用氢气还原法制备出高分散性纳米级零价铁催化剂,采用固定床反应器研究了其对NO催化还原能力。采用XRD、TEM、SEM、XPS等分析手段对催化剂的微纳结构进行表征,考察了催化剂制备过程中H2浓度及煅烧还原温度对催化剂分散性、催化还原NO性能影响,催化剂的再生以及CO对催化剂还原NO的影响,并对CO还原NO反应机理进行推测。结果表明,催化剂活性随着H2浓度的增加逐渐增强,随着煅烧还原温度的升高先升高后降低。当H2浓度为100%时,在700℃煅烧温度下制备出的催化剂,Fe0粒径达到9 nm且均匀分散在椰壳活性炭中。Fe0/BAC-100H2-700催化剂在325℃时,NO转化率可以达到100%,表现出了良好的NO脱除效果。还原NO过程中,Fe0逐渐被氧化成Fe3O4导致催化剂最终失活,失活后的催化剂经再生处理后可恢复活性。NO还原反应过程中CO的加入可以还原Fe3O4再次生成Fe0,提供活性位点,有效的延长催化剂的寿命,减缓催化剂失活的速率。  相似文献   

11.
稀燃汽车尾气中氮氧化物的催化消除技术   总被引:3,自引:0,他引:3  
稀薄燃烧(简称稀燃)技术能够使燃料在发动机内充分燃烧,既提高了燃油的经济性,同时又减少了温室气体CO2的排放,因而是一项节能减排的重要技术.但在稀燃条件下氧气大量过剩,加剧了三效催化剂对还原剂的催化氧化,降低了还原剂对NOx催化还原的效率.目前,国际上对稀燃气氛下NOx的消除主要采用NO直接分解、选择性催化还原(SCR...  相似文献   

12.
以胜利褐煤和昭通褐煤为研究对象,采用H_2O、HCl/CH_3COONH_4及CH_3COONH_4/HCl/HF对褐煤进行逐级脱矿处理,利用XRF、XRD和SEM对褐煤中的矿物质种类、含量及其形貌进行分析,采用热重法对比分析了脱矿前后煤样的燃烧特性及动力学反应过程,分析了矿物质对褐煤燃烧特性的影响。结果表明:两种褐煤中的主要矿物元素为Si、Al、Fe、S及碱/碱土金属元素,主要矿物组成为石英、高岭石、云母、石膏、方解石和黄铁矿;3种脱矿方式的矿物质脱除率分别为:胜利褐煤1.22%、32.49%、97.90%,昭通褐煤0.47%、26.41%、94.79%;原煤及脱矿煤的综合燃烧指数S的大小顺序为:原煤HCl/CH_3COONH_4脱矿煤H_2O脱矿煤CH_3COONH_4/HCl/HF脱矿煤,胜利及昭通褐煤呈现相同的规律。三级脱矿处理显著改善了煤的综合燃烧性能。煤中以羧酸盐形式、配位键形式存在于含氧或含氮官能团上的碱及碱土金属对煤的燃烧存在促进作用。煤中水溶性矿物质对燃烧具有抑制作用。褐煤燃烧从着火温度到燃尽温度这一温度区间满足一级反应方程,且线性相关性系数R均在0.985以上。  相似文献   

13.
对金属铁及其化合物在烟气脱硝过程中的催化作用的研究进展进行了综述。金属铁能够直接催化还原NO为N2,同时铁被氧化为铁的氧化物。当在烟气中补充一定量的还原气体CO,则CO通过还原铁的氧化物以保证金属铁和NO的连续反应,从而提高NO的脱除效率。在典型的模拟烟气条件下铁丝网在900℃以上可达到90%以上的脱硝效率。Fe2O3能有效地还原再燃脱硝过程的中间产物HCN/NH3,从而大幅度提高再燃脱硝的效率。此外,Fe-ZSM-5分子筛也具有催化还原NO的性能。铁催化还原NO的微观反应机理尚需深入研究。  相似文献   

14.
阮丹  齐砚勇  李会东 《硅酸盐通报》2016,35(6):1674-1681
随着对NOx排放标准要求越来越高,煤粉燃烧生成的NOx中NO所占比例约90%,对NO的还原研究是一项重要的课题.本文利用CHEMKIN软件的PSR模块对CO还原NO的过程进行了模拟,并对其热力学与动力学分析.结果表明:在无催化剂条件下,CO还原NO所需温度约为1650 K,压力对于反应转化率及反应路径影响不大,但对于反应速率有明显影响;反应路径分析发现,NCO自由基及N2O自由基受温度影响大,增加温度利于该两自由基生成,促进反应进行.在高温条件下,NO的还原反应不仅为CO+ NO→CO2+0.5N2还伴随2NO(=)O2+ N2反应的进行.  相似文献   

15.
通过燃烧优化有望实现煤粉高效低氮燃烧与颗粒物(PM)的协同源控制,也是完成低碳的重要清洁燃烧方式。为阐明预热-燃烧过程NO和PM生成特性和减排机理,针对预热过程中煤氮的析出、挥发分氮的转化以及预热-燃烧过程NO的生成和还原机制及PM生成展开研究。烟气中主要气体组分和PM分别采用烟气分析仪和荷电低压撞击器(ELPI+)测量和记录。结果表明,气相过量空气系数(αgas)可作为以气相反应为主的预热区反应性(氧化性或还原性)的有效判据。适当增大预热区过量空气系数(αp)会增加预热区NO生成,但明显降低整个预热-燃烧过程中NO生成。高预热温度可显著降低NO的生成,预热温度由1 200 K升至1 600 K时,NO降低效率由42.25%提高至51.44%。然而,αp持续增加将减弱NO脱除率的下降趋势。燃烧温度升高对焦炭氧化生成NO和焦炭还原NO过程均有促进作用,但对NO生成的促进作用更显著。同时,预热-燃烧降低细颗粒物生成,尤其是PM0.3生成量减少27.57%。预热-燃烧技术可实现燃烧过程中对PM和NO生成的...  相似文献   

16.
利用一维热态实验炉模拟煤粉燃烧的快速升温条件,考察烟煤添加选铁尾矿后在不同温度(750℃,800℃,850℃,900℃,950℃)、不同过量空气系数(0.8,0.9,1.0,1.1,1.2)以及不同选铁尾矿添加量(质量分数为1%,3%,5%)的条件下燃烧产生的NOx的排放特性。结果表明:在750℃~950℃范围内,选铁尾矿存在一个合适的脱硝窗口即800℃~900℃;且选铁尾矿的脱硝活性随着过量空气系数的增加而增加,当过量空气系数为1.2时表现出最好的脱硝活性;选铁尾矿添加量对于NOx脱除率的影响因温度不同表现出不同的结果,在750℃下选铁尾矿的NOx脱除率随着其添加量的增加而增加,在800℃~950℃下3%为最佳添加量。通过对选铁尾矿的XRD分析以及Fe2O3的TG-MS分析得出,选铁尾矿具有催化脱硝活性的一个原因是选铁尾矿内的铁白云石受热分解后生成Fe2O3,CO还原NO的催化还原过程主要是通过Fe2O  相似文献   

17.
利用气相色谱仪对若干条隧道窑进行了必要测定,结果表明:离窑气体中几乎不含CO和H_2,不完全燃烧成分只有少量的CH_4。在还原气氛中,CO/H_2的比值在1.66~1.89的范围内。CH_4无论在还原带、预热带前部和烟道里,其含量都很低。从预热带前部烟气的测定得知,还原气氛烟气中的CO和H_2经过氧化阶段已燃烧完全,离窑烟气中不完全燃烧热损失主要来自两方面:烟气中可燃气体CH_4和固定碳粒子。  相似文献   

18.
不同变质煤热解和气化中燃料氮的转化规律   总被引:1,自引:0,他引:1  
利用水平管式炉对不同变质程度煤进行了热解和气化实验,并利用傅里叶红外气体分析仪对热解和气化过程中主要含氮产物的释放规律进行了研究.结果发现,煤的变质程度对煤热解和气化过程中HCN的释放具有重要影响,而对NH3的释放影响较小.对于低变质程度煤来说,挥发分含量较高,而挥发分的深度裂解是HCN产生的主要来源.因此,低变质程度煤热解过程中转化为HCN的燃料氮份额高于高变质程度煤;对于不同变质程度煤在热解过程中转化为NH3的燃料氮份额则大致相当.对不同变质程度煤在CO2气氛条件下气化反应过程中含氮产物生成规律的研究发现,焦炭氮几乎全部转化为NO;转化为NH3的燃料氮份额有所增加;除印尼褐煤外,转化为HCN的燃料氮份额也有所增加;此外,对CO2气化过程中NO的生成机理进行分析,认为焦炭氮的直接氧化可能是NO产生的主要来源.  相似文献   

19.
随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911℃,其产生的高温烟气温度稳定在750℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10^-6和12.96×10^-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。  相似文献   

20.
无焰燃烧是近年来广受关注的新型高效清洁燃烧技术之一,具有容积式低反应速率燃烧区和典型中低温燃烧特性,需耦合详细反应机理并考虑湍流与化学反应交互,以提高无焰燃烧及其NO生成数值模拟精度。基于动态自适应反应机理对煤粉无焰燃烧和NO生成特性进行了高保真数值模拟研究。通过采用动态自适应机理简化算法,模拟过程实时对自主发展的含氮骨架机理进行当地简化。评估发现,相较于单纯采用骨架机理模拟,采用动态自适应反应可在不牺牲计算精度的条件下获得约3倍的计算加速,且对炉内NO生成的预测精度显著优于传统NO后处理模拟方法。基于经试验验证的模拟结果,还获得了HCN和NH_3等典型含氮前驱体的炉内分布,并进一步分析了煤粉无焰燃烧燃料氮转化路径、炉内活跃组分和活跃反应等氮转化关键信息。结果表明,煤粉无焰燃烧NO生成主要取决于NH_3、HCN和N_2O中间体,而NCO和HNO是较为关键的中间组分。HCN中间体主要通过HNCO/CN和NCO路径生成NO。NH_3中间体由HNCO生成,并进一步转化为NH_2和HNO,最终生成NO。N_2O路径主要参与NO还原,对NO生成贡献较低。CH_3CN也是生成NO的重要中间组分,可通过NCO路径生成NO。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号