首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以不同粒度的兰炭粉为原料,采用水蒸气活化法制备活性炭,研究了兰炭粉粒度对活性炭的收率、碘和亚甲基蓝吸附值、比表面积和孔结构的影响。结果表明:在相同的工艺条件下,随着原料粒度的增加,所制备活性炭的收率、碘和亚甲基蓝吸附值、比表面积、中孔率均呈现出先增加后下降的趋势。当原料粒度为0.85~1.00 mm时,活性炭的性能最好,其收率为62%,碘和亚甲基蓝吸附值分别为863.6 mg/g、264.6 mg/g,比表面积为818.52 m~2/g,中孔率为81.4%,活性炭具有多级孔的特征,但以中孔为主。  相似文献   

2.
兰炭末加入黏结剂混合成型,经炭化和活化制得成型活性炭.利用TG-DTG对热解过程中成型料的炭化行为进行探讨;测试不同炭化温度的成型活性炭的收率、抗压强度和碘吸附值,采用N2吸附法和红外光谱对450℃炭化成型活性炭的孔结构及表面化学性质进行表征.结果表明,炭化温度越高,成型活性炭的收率越小,抗压强度越小,碘吸附值越大.经450℃炭化、800℃水蒸气活化60 min制得的活性炭表面具有大量的羟基、羰基和烃羟基等活性基团,比表面积为384.53 m2/g,属于中孔隙发达的活性炭.  相似文献   

3.
以3~6 mm兰炭粉末为原料,用物理法和物理化学法活化制备活性炭,重点研究了时间、温度、水蒸气用量、浸渍比和浸渍时间对成品碘吸附值的影响,并对成品做了性能表征。结果表明,物理活化法可制备出比表面积达463.26 m2/g的活性炭,其碘吸附值达768 mg/g,收率达为46.25%;物理化学法制备的活性炭比表面积为571.31 m2/g,碘吸附值达932 mg/g,收率41.88%。孔径分析结果表明,二者的孔径主要集中在3~8 nm,属中孔发达的活性炭。  相似文献   

4.
以兰炭粉为原料,水蒸汽为活化剂制备粉状活性炭。考察了水蒸汽流量、活化温度、活化时间、兰炭粉粒径对碘和亚甲蓝(MB)吸附值的影响。利用全自动吸附仪分析活性炭的比表面积和孔径分布,利用傅里叶变换红外光谱仪和X射线衍射仪对活性炭表面官能团和活性炭的微晶结构进行表征。实验结果表明:活化温度、活化时间、水蒸汽流量和原料粒度对活性炭的收率和吸附性能都有较大影响。当兰炭粉粒径尺寸为0.9~1.0 mm、活化温度为800℃、活化时间为180 min、水蒸汽流量为50m L/h时,制备活性炭的碘吸附值最高达到1 109.48 mg/g,比表面积为786.82 m2/g。制得的活性炭以微孔和中孔为主,而且具有多级孔的特征。相对于兰炭粉而言,活性炭含氧、含氮官能团数量增多。  相似文献   

5.
石莼基微/中孔复合结构活性炭的制备及性能   总被引:1,自引:0,他引:1  
以海洋海藻废弃物石莼为原料,通过热解预炭化,KOH活化制备活性炭。以碘吸附值和亚甲基蓝吸附值为吸附性能评价指标,探究了活化工艺对活性炭吸附性能的影响。结果表明,当KOH与石莼半焦质量比(碱炭比)为3.0∶1.0、活化时间为45 min、活化温度为800℃时,活性炭吸附性能最优,其碘吸附值和亚甲基蓝吸附值最大,分别为1824.19 mg/g、914.98 mg/g。FTIR测试表明,活性炭含有大量羟基等官能团。SEM测试表明,活性炭表面粗糙、存在大量孔结构。活性炭的BET比表面积为2616.3 m2/g,Langmuir比表面积高达4883.5 m2/g,平均孔径为2.73 nm。石莼基活性炭的孔结构为微/中孔复合结构,有作为储能、环保材料的潜质。  相似文献   

6.
以陕北清涧红枣核为原料,Zn Cl2为活化剂,采用化学活化法制备了活性炭。研究了浸渍比、活化时间以及活化温度等参数对活性炭收率、碘吸附值以及结构性能的影响。结果表明,在本实验条件下,当氯化锌与原料比为0.8,活化温度为700℃,活化时间为60 min时,所制得的活性炭的碘吸附值达到最高值,为1114.6 mg/g;BET比表面积为1031 m2/g,最高单点吸附总孔体积为0.504 cm3/g,BJH吸附平均孔径为3.364 nm,活性炭的收率为41.6%。  相似文献   

7.
探讨了活化温度、活化时间、水蒸气流量对再生后活性炭吸附性能和得率的影响,得到了最佳工艺条件:活化温度1 000℃,活化时间60 min,水蒸气流量2.23 g/min。该工艺条件下再生活性炭的碘吸附值1 174.37 mg/g,亚甲基蓝吸附值200 mL/g,得率为62.87%。再生后活性炭的吸附指标达到国家一级品的标准,其中亚甲基蓝吸附值是国家一级品标准的2.22倍。同时,测定了该活性炭氮吸附,通过BET计算了活性炭的比表面积,通过密度函数理论(DFT)表征了活性炭的孔结构。结果表明:该活性炭为微孔型,BET比表面积为1 254.51 m2/g,总孔容为0.592 6 mL/g。  相似文献   

8.
利用柠条作为原材料,在350和600℃下进行热解制备生物炭,并对制备的柠条生物炭进行800℃水蒸气活化1 h处理得到柠条活性炭。使用热分析仪和傅里叶红外光谱仪分析了柠条活性炭的官能团组成以及炭化过程中的结构变化,探讨了热解机理。使用扫描电子显微镜和比表面及孔径分析仪观察和分析了活性炭的孔结构特征;采用碘吸附法研究了柠条活性炭的吸附性能。结果表明:柠条炭化过程中,半纤维素、纤维素和木质素在150~680℃较宽的温度范围内发生热解,并获得柠条生物炭。炭化的本质主要是打开长链醇羟基、烃基,获得结构简单的芳香族化合物。柠条在600℃炭化、800℃水蒸气活化后制备的活性炭保持了纤维组织的骨架结构,并具有大量的孔结构,以5 nm以下的孔结构为主,比表面积达到187 m2/g,碘吸附值可达221 mg/g,柠条是制备活性炭的理想材料。  相似文献   

9.
NaOH活化法制备煤基活性炭的研究   总被引:2,自引:0,他引:2  
以焦作无烟煤为原料,NaOH为活化剂,采用化学活化法制备煤基活性炭,分别考察了碱炭比、活化温度和活化时间等工艺参数对活性炭吸附性能和收率的影响;利用低温N2吸附法对活性炭的比表面积、总孔容及孔径分布进行了表征.结果表明,在碱炭比为4,活化温度为750℃和活化时间为1 h的条件下,可以制得比表面积为2 483 m2/g,总孔容为1.41 cm3/g,碘吸附值为2 530 mg/g,亚甲蓝吸附值为418 mg/g的煤基活性炭.  相似文献   

10.
研究了以石油焦为原料,用氢氧化钾为活化剂制备高比表面积活性炭方法。通过正交实验与进一步的单因素实验考察了碱焦比、活化温度和活化时间对活性炭碘吸附值和活化收率的影响。实验结果表明碱焦比对活性炭碘吸附值影响最显著,增大碱焦比、延长活化时间和选择合适的活化温度能提高碘吸附能力。在碱焦比为4∶1,活化温度750℃和活化时间120 min条件下制备的活性炭BET比表面积可达2775 m2/g,总孔容为2.888 cm3/g。  相似文献   

11.
以粒径小于6mm的废弃兰炭末为原料,高温下分别用水蒸气和CO2为介质活化制备兰炭基活性炭。采用碘吸附实验、N_2吸附/脱附实验和SEM等手段对成品的孔隙结构进行表征,比较了不同温度下活化介质对成品孔隙形成过程的影响,并分析了活化机理。结果表明:水蒸气活化速率更快,在温度较低时反应就能充分进行。随着活化温度的升高,两种活化介质制备活性炭的碘吸附值先增加后减小,收率均降低;N_2吸附/脱附实验表明,两种吸附等温线均符合I型吸附曲线的特征,成品微孔发达并含有中、大孔,900℃和1 000℃分别是水蒸气和CO_2活化过程的最佳温度,CO_2活化效果更好,成品的微孔比表面积和微孔体积低,平均孔径更大;机理分析表明,随着活化温度上升,先持续发生径向造孔作用,再发生横向扩孔作用,径向活化是活性炭形成发达微孔的主要控制过程。  相似文献   

12.
以沙漠治理树种长柄扁桃的种壳为原料,采用水蒸气活化法制得了介孔发达的活性炭,并研究了炭化温度、活化温度、活化时间、水蒸气用量对活性炭吸附性能及产率的影响。结果表明:在炭化温度600℃、活化温度850℃、活化时间60 min、水蒸气与炭化料的质量比为6:1的最佳工艺条件下,制得活性炭样品的产率为12%,碘吸附值和亚甲基蓝吸附值分别达到1 175和315 mg/g,介孔率为60.9%,比表面积为1 127 m2/g,平均孔径2.6 nm,在吸附平衡时间为24 h时,活性炭对水溶液中头孢氨苄的吸附量高达245 mg/g,优于相同条件下制得的椰壳和核桃壳活性炭的吸附能力。  相似文献   

13.
高比表面积煤基活性炭的制备及其吸附性能的研究   总被引:2,自引:0,他引:2  
以太西无烟煤为原料,KOH为活化剂,采用化学活化法制备高比表面积煤基活性炭,着重考察了碱炭比、活化温度、活化时间对活性炭吸附性能的影响。研究结果表明:当碱炭比为4、活化温度为800℃、活化时间为1h时,可以制得比表面积达3215m^2/g,碘吸附值达2884mg/g,亚甲蓝吸附值达548mg/g的高比表面积煤基活性炭。  相似文献   

14.
为拓展兰炭粉高附加值利用途径,研究了水蒸气活化兰炭粉制备活性炭的工艺优化、动力学和孔隙演变行为。利用氮气吸附仪分析活性炭的比表面积和孔径分布。研究结果表明:最佳的活化工艺条件下制备的活性炭的碘和亚甲基蓝吸附值以及比表面积分别为1 134.25 mg/g、257.06 mg/g和847 m~2/g,活性炭具有以中孔为主的多层孔特征。二氧化碳气化焦炭的混合模型能够精确拟合水蒸气活化兰炭粉的动力学,发现活化温度对活化速率和活性炭收率的影响极其显著。随着活化时间的延长,气孔的演变行为是微孔生成、微孔扩充、微孔坍塌变为中孔或大孔。  相似文献   

15.
以神木烟煤为原料,煤沥青为黏结剂,在较低浸渍比下采用KOH和ZnCl_2活化法制备成型活性炭,利用低温(77 K)N_2吸附法对活性炭的比表面积及孔结构参数进行表征,考察浸渍比对活性炭孔结构的影响及其液相吸附性能,并对比分析两种化学活化法所制活性炭结构与性能的差异.结果表明,在相同浸渍比下,KOH活化法所制成型活性炭的比表面积、总孔容及碘吸附值均高于ZnCl_2活化法.当浸渍比为1.0时,采用KOH活化法可制备出表面积为811 m~2/g,总孔容为0.513 cm~3/g,中孔比例为23.6%,碘吸附值为1 125 mg/g的成型活性炭;采用ZnCl_2活化法可制备出表面积为472 m~2/g,总孔容为0.301 cm~3/g,中孔比例为30.6%,碘吸附值为527 mg/g的成型活性炭.两种活化法所制成型活性炭的孔径主要分布在1.2 nm~2.0 nm的微孔和3.6 nm~4.5 nm的中孔范围内.  相似文献   

16.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

17.
利用稻草制浆黑液中提取的木质素/二氧化硅复合材料为前驱体制备了活性炭.研究了活化剂KOH用量、活化反应的温度和活化反应的时间对活性炭吸附性能的影响.最佳的反应条件为:浸渍比(KOH于复合材料的质量比)为3:1,活化反应的温度为750℃,活化反应的时间为1h,此时制备的活性炭碘吸附值最大.制备的活性炭碘吸附值达到816.26 mg/g,BET比表面积为532.6 m2/g.活性炭大部分为介孔结构,含有少量微孔结构,平均孔径在6 nm.  相似文献   

18.
以熔融纺丝制备的Kraft硬木木质素纤维(HKL)为原料,经炭化得到木质素基炭纤维(HKL-CF),再采用水蒸气活化法制备了活性炭纤维(HKL-ACF),通过红外光谱仪和扫描电镜研究了水蒸气活化对活性炭纤维化学结构和表面形貌的影响,采用全自动物理吸附仪、X射线衍射仪和拉曼光谱仪等研究了活化时间、活化温度和活化水蒸气流量对所制备活性炭纤维的比表面积、孔结构和微晶结构的影响规律。研究表明,水蒸气活化处理提高了活性炭纤维中的C—O和C=C结构含量;随着活化时间的延长,活性炭纤维的比表面积增大,且随活化温度和水蒸气流量的提高呈现出先增大后减小的趋势;晶粒尺寸随着活化时间和温度的提高,逐渐变小,纤维表面的石墨化程度随活化时间的增加,逐渐变大;活化温度800 ℃,活化时间4 h,水蒸气流量1 mL/min下制备的活性炭纤维的BET比表面积最高可达2 081.34 m2/g,总孔容最大为1.60 cm3/g。  相似文献   

19.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

20.
对竹炭的精炼、竹炭蒸汽活化法制活性炭进行了规律性研究,对碱法制活性炭作了初步探索。竹炭在煅烧(或精炼)温度大于900℃,其电阻率小于1Ω/cm,700℃以下基本为绝缘体。竹炭在用水蒸气活化时,烧失率约为50%时,碘吸附值>900mg/g,亚甲基蓝吸附值>70mL/g;当烧失率为70%时,碘吸附值>1100mg/g,亚甲基蓝吸附值>140mL/g,微孔、中孔容积>0.45mL/g,比表面积约900m2/g。KOH为活化剂,碘吸附值可>1100mg/g,亚甲基蓝吸附值>170mL/g,并有待进一步研究和开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号