首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 64 毫秒
1.
以酚醛树脂为原料,采用水蒸气活化,制备了炭纤维和泡沫炭粉两种活性炭作为超级电容器电极材料。采用扫描电镜和物理自动吸附仪对两种活性炭的形貌与孔结构进行了表征;另外采用循环伏安法和恒流充放电法,对其充放电性能进行了研究。结果表明,在1.0mA电流下充放电,炭纤维和泡沫炭粉的充电比电容分别为176.7和144.4F.g–1,放电效率分别为88.2%和85.1%;随着充放电电流的增大,二者充放电容量减小,放电效率提高。循环伏安测试表明在600mV.min–1扫描速率下炭纤维的电化学窗口大于泡沫炭粉。  相似文献   

2.
研究不同含量的活性炭对混合电容器的影响,并用恒流充放电、交流阻抗、循环伏安测试方法进行表征。结果表明:活性炭可以增强混合电容器的电容性能,当含量为32%时同时表现出赝电容和电双层电容特性,同时具有充放电平台和快速充放电的电化学性能。  相似文献   

3.
以酚醛树脂为原料,NaOH为活化剂制备超级电容器用电极材料高比表面积活性炭(HSAAC),考察了制备条件对HSAAC碘值w(I)和比电容的影响。结果表明,在酚醛树脂炭化后加入NaOH,炭化温度为600℃、时间1h,活化温度为900℃、时间1h,制备的HSAAC的w(I)和比电容具有最大值,分别为1623mg/g、146.53F/g;而在固化前加入NaOH,制备的HSAAC的w(I)和比电容得到大幅度提高,分别为1895mg/g、240.99F/g,比电容接近其理论容量280F/g,但收率低,仅为10%。  相似文献   

4.
双电层电容器用酚醛树脂基活性炭的制备   总被引:2,自引:0,他引:2  
以酚醛树脂为原料,KOH为活化剂制备双电层电容器用高比表面积活性炭电极材料。考察了工艺因素对活性炭比电容的影响,探讨了酚醛树脂基高比表面积活性炭作双电层电容器电极的电化学特性。结果表明,在固化温度为150℃、炭化温度为700℃,ζ(碱/炭)为4,活化温度为800℃时,制得的高比表面积活性炭双电极比电容可达74.2 F/g。  相似文献   

5.
以草酸、硼酸及氢氧化锂为原料,通过水相中发生酯化反应和在乙腈中进行中和反应结合的方法合成LiBOB(双草酸硼酸锂)。通过电导率、循环伏安、恒电流充放电、交流阻抗等电化学性能测试方法,探索溶剂组成、LiBOB浓度及商业主流电解质盐Et_4NBF_4添加量对LiBOB电解液电化学性能的影响。以LiBOB电解质盐不同溶剂组成的电解液组装的模拟碳超级电容器,工作电压范围在0~2.7 V,循环伏安曲线出现了类矩形的特征;充放电可逆性及电化学循环稳定性良好。LiBOB-Et_4NBF_4工作电解液的电导率最优可达12.5×10~(–3) S/cm。  相似文献   

6.
活性炭的制备及其在有机超级电容器中的应用   总被引:1,自引:0,他引:1  
选择廉价的煤沥青为原料,经预处理和炭化,以KOH和CO2为活化剂在800℃进行物理活化和化学活化,制得活性炭。以1mol/LEt4NBF4/PC为电解液,制备超级电容器单元。测试结果表明,活性炭SBET达2352m2/g,总孔容为1.411cm3/g,平均孔径达2.399nm,振实密度达0.32g/cm3。制备的电容器为2.5V/5F,直流内阻为169m?,交流内阻为38m?,漏电流<2mA。4800次循环后,容量衰减<3%,能在–40~+60℃的宽温度范围内正常工作。  相似文献   

7.
NaOH活化制备超级电容器用活性炭球电极材料   总被引:1,自引:0,他引:1  
以NaOH为活化剂、采用蔗糖水热法,制备超级电容器用高比表面积球形活性炭电极材料。采用标准N2吸附法、SEM和XRD对活性炭的结构进行表征,用恒流充放电测试其在1mol/L Et4NBF4/PC电解液中的电化学性能,并将其与日本商业电容炭YP17进行了比较。结果表明:ζ(NaOH∶活性炭)为5∶1、600℃活化1h制备的球形活性炭比表面积为3261m2/g,其比电容可达156F/g,远大于YP17(108F/g),大电流倍率性能突出。  相似文献   

8.
低温下(0℃)化学氧化合成了盐酸掺杂聚吡咯。分别以聚吡咯和活性炭为电极材料组装成电化学电容器。采用扫描电镜、恒流充放电、循环伏安和交流阻抗测试仪研究了混合电容器的电化学性能。结果表明:低温下合成的聚吡咯呈颗粒状堆积,粒径为100~300nm;电流密度为6×10–3A/cm2时,混合电容器在1mol/LNa2SO4电解液中比电容高达178.6F/g,100次循环后比电容为初始容量的88.4%,漏电流仅为0.16×10–3A/cm2。  相似文献   

9.
采用干法和湿法两种成型工艺制备了超级电容器用活性炭电极,考察了成型工艺对电极性能的影响。结果表明:干法电极碳颗粒之间接触更为紧密,干法电极密度达0.65 g/cm~3,相对于湿法电极提高了10%;干法电极在容量、内阻、循环性能上都优于湿法电极;干法成型工艺不使用任何溶剂,绿色环保、节省成本,是一种具有重要研究意义和商业应用价值的电极成型工艺。  相似文献   

10.
超级电容器也称电化学电容器,具有良好的脉冲性能和大容量储能性能.质量轻。循环性能好,是一种新型绿色环保的储能装置,近年来受到科学研究人员的广泛重视和应用市场的关注,本重点介绍了超级电容器的性能优势.研究进展及应用领域,以期在倡导建设节约型社会中.使相关厂家.商家和消费对这一新型结能器件有所了解和以识。[编按]  相似文献   

11.
以石油焦为原料,KOH为活化剂,经微波加热活化,制备出了超级电容器用高性能活性炭电极材料。以制得的活性炭制成的电极片为电极,6mol/L的KOH溶液为电解液,组装了模拟电容器。研究了加热时间和碱焦比对活性炭比表面积及电容器性能的影响。研究表明:在KOH与石油焦按3∶1的质量比混合,微波辐射时间为15min时,制备的活性炭比表面积达2683m2/g,模拟电容器单电极比电容量达361F/g。  相似文献   

12.
制备了沥青焦基活性炭双电层电容器用电极材料,将其分别经水洗、酸洗以及超音速气流粉碎处理。在1 mol/L(C2H5)4NBF4/碳酸丙烯酯电解液体系中进行电化学测试,对比评价了各活性炭前处理方法对电容器电化学性能的影响。结果表明,酸洗后活性炭电极比电容提高7%达到163 F/g,高功率放电性能明显改善,当电流密度由70 mA/g增加到1 A/g时,其电极比电容保持率为88%;活性炭进行超细粉碎后不利于电化学性能的提高。  相似文献   

13.
将碳纳米管制成薄膜电极,以二(三氟甲基磺酸酰)亚胺锂(LiTFSI)-1,3-氮氧杂环戊-2-酮(OZO)室温熔盐为电解液,装配成模拟电容器。测试结果表明,比电容为20.5F/g,工作电压可达2.0V以上,循环充放电500次后容量损失小于5%。室温熔盐在碳纳米管电化学电容器中表现出良好的电化学兼容性,具有良好的热稳定性,是超级电容器非常有前景的新型电解液。  相似文献   

14.
采用BET、XRD和XPS等方法,对惰性气氛中热处理前后的活性炭材料的结构和表面化学状态进行了表征,测试了其在1 mol·L–1 Et4NBF4/PC中的电容性能。结果表明,热处理后活性炭的比表面积和表面含氧量降低,比电容略有减小,但循环性能显著改善,自放电明显下降;800℃热处理后具有较佳的综合性能,比电容为131 F/g,1 000次循环充放电后容量保持率由87.7%提高到92.4%,24 h自放电率由45.2%降至37.2%。  相似文献   

15.
以1-甲基-3-乙基咪唑四氟硼酸离子液体和果糖为原料,微波作用下一步制得一种新型碳点离子液体复合物,用此复合物代替部分导电剂和粘结剂制成新型炭基超级电容器,并与传统的炭基超级电容器进行了比较研究。结果表明:所制复合物中有大量直径小于4nm的碳纳米粒子,70℃时电导率达到13.26×10–3S·cm–1。所制超级电容器充放电效率由传统炭基超级电容器的89.1%提高到97.3%,比电容由115.7 F.g–1提高到251.1 F·g–1,内阻由1.95Ω 降低为1.23Ω ,且循环性能显著提高。  相似文献   

16.
为了降低超级电容器用多孔炭的成本,以花生壳为原料,磷酸为活化剂,采用微波加热法一步制备了多孔炭,研究了该多孔炭的电化学性能。结果表明,当磷酸/花生壳质量比为3,微波功率为600 W,加热时间为20 min时,所制多孔炭的比表面积为1 494 m2/g。随着磷酸/花生壳的质量比从0.6增加到3,多孔炭的比表面积逐渐增大。在电流密度为50 mA/g时,所制电极的比容达196 F/g,300次循环后,其比容保持率为92.7%。  相似文献   

17.
超电容器活性炭电极储电影响因素的研究   总被引:1,自引:2,他引:1  
用活性炭作为超电容器的电极材料,在不同条件下对超电容器进行充放电测试,考察其在不同充电条件下的容量变化。实验发现,微孔活性炭比表面积较大时有储电的优势,电容器在充电电流强度较小时有较大的容量;随着电流强度的增加,充放电容量逐渐降低。不同的充电方式对其储电容量有较大的影响,漏电流是影响双电层电容器性能的一个重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号