首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文采用插销法研究了低合金高强度钢焊接热影响区的断裂特性,并利用实际的焊接件测定了热影响区不同部位的冲击韧性,对断口进行了分析。试验结果表明,为防止焊接热影响区产生低应力断裂,来用预热措施是十分有效的,与不预热相比较,预热50℃时可使临界断裂应力提高80%左右,预热80℃以上时,断裂强度与母材强度相接近。断口观察结果表明,不预热时绝大部分为结晶断口,且以氢致准解理断口为主;预热时绝大部分是等轴韧窝断口,但也有少量沿晶和氢致准解理断口。焊接热影响区中熔合线上的冲击值最低,其断口形貌既不同于呈准解理的焊缝断口,也不同于热影响区其它部位的断口,是细小、均匀且无明显变形的韧窝状断口。  相似文献   

2.
采用插销实验和扫描电镜观察方法详细研究了焊缝扩散氢含量和非金属夹杂物对10Ni5CrMoV低碳中合金高强钢焊接热影响区氢致裂纹断口微观形貌的影响。结果得出,扩散氢含量是影响氢致裂纹断口微观形貌的主要因素,在插销净截面应力300~800MPa的范围内,加载应力对延迟扩展区断口形貌无明显影响。钢中硫化物夹杂的增加使扩展区形貌从IG_(HE)向MVC_(HE)转变,而含氧化物夹杂钢则转为QC_(HE)。作者提出了一个新的适于解释氢致裂纹扩展第Ⅱ阶段断口微观形貌的竞争开裂模式,从而从氢致裂纹本质机制上圆满说明了上述实验结果。  相似文献   

3.
对Q690E低碳贝氏体高强钢进行80% CO2+20% Ar混合气体保护焊接试验,并检测母材、焊接接头金相组织和力学性能,通过SEM手段观察母材和焊接接头冲击试样断口形貌.结果 表明:Q690E钢母材冲击断口形貌表现为韧性断裂,焊接后热影响区(HAZ)冲击断口形貌表现为解理断裂;经过微观组织分析,HAZ冲击韧性下降,主要原因是HAZ区贝氏体组织中出现大量的M-A组元.HS-70焊丝低强匹配及熔合区贝氏体片层粗化导致焊接接头强度明显低于母材.  相似文献   

4.
X80级管线钢热影响区的局部脆化   总被引:1,自引:0,他引:1  
研究了国产X80级管线钢热影响区的冲击韧性和组织的局部脆化.结果表明,该钢的焊接热影响区的冲击韧性较母材降低50%以上;在所研究的20~-40 ℃温度区间内,其断口的宏观形貌特征从部分脆性特征转变为完全的脆性断口;20 ℃放射区断口呈现韧性断裂和解理断裂共存的混合型断口,并且试验温度为20 ℃和0 ℃时,分别在放射区和纤维区可观察到微观裂纹;热影响区断口表层剖面组织为粒状贝氏体,显示出粗晶区的特征.裂纹扩展方向为沿晶界扩展,粒状贝氏体中M/A岛尺寸增大,并存在裂纹穿过岛状物的现象,这是晶界严重脆化的结果.  相似文献   

5.
 采用插销实验、斜y形坡口焊接裂纹实验和焊接热影响区最高硬度实验对厚度30 mm的JG590钢板的焊接冷裂纹敏感性进行了研究,分析了插销试件的断口和显微组织,以斜y形坡口焊接裂纹实验结果为基础,通过理论计算得到了JG590钢在不同焊接线能量、不同焊接材料情况下的临界预热温度和临界冷却时间。结果表明:采用低氢HS 60实芯焊丝,在一般拘束条件下,可以不预热,而在拘束较苛刻的条件下,预热温度应不低于100 ℃;使用较高扩散氢含量的GFM 60金属粉芯焊丝时,在一般拘束条件及较苛刻拘束条件下,预热温度应分别不低于50 ℃和125 ℃。  相似文献   

6.
为了研究T_(8/5)时间对X80管线钢热影响区粗晶区组织和性能的影响,在Gleeble 3500热模拟试验机上对其分别进行4个焊接工艺(T_(8/5)时间分别为21、27、33和40s)的加热冷却后,对粗晶区夏比冲击性能进行测试,并对其显微组织和冲击后断口形貌进行分析。结果表明,T_(8/5)时间为21s的焊接工艺下热影响区粗晶区具有较稳定且优异的低温夏比冲击性能;随着T_(8/5)时间由21延长至40s,热影响区粗晶区的低温冲击韧性下降,断裂方式由韧性断裂向脆性断裂转变,-20℃下冲击断裂方式由部分韧性断裂转变为完全脆性断裂;延长T_(8/5)时间促进了热影响区粗晶区近熔合线侧长条大块状M/A组元的形成,使得贝氏体板条间距变大。  相似文献   

7.
结合焊接性理论分析,对500 MPa级高性能桥梁钢板开展了焊接热影响区最高硬度、斜Y坡口焊接裂纹和对接接头系列温度冲击试验研究。试验结果表明,试验钢的碳当量CEV为0.44%,Pcm为18%,在室温下焊接热影响区最高硬度为274 HV10,淬硬倾向小;采用焊条电弧焊和气体保护焊时,板厚≤32 mm时不需要预热;板厚32~60 mm时需要预热80℃;焊接热影响区的ETT50达到-60℃,具有良好的低温冲击韧性。试验钢板焊接性良好,可应用于高性能桥梁的建设。  相似文献   

8.
通过对安阳钢铁公司生产的含硼低成本低碳贝氏体钢AH70DB进行焊接性能研究,分别进行了焊接CCT曲线测定,焊接冷裂纹敏感性研究,以及对焊接热影响区组织性能、焊热热输入量、焊后热处理及焊接接头综合力学性能评定等内容进行了试验研究。研究表明,AH70DB钢淬硬倾向较小,对氢致开裂敏感性较低。在中等拘束条件下焊接,室温10℃以上不需预热;在苛刻拘束条件下,可实现低预热温度,预热温度50℃以上。采用推荐的焊接工艺焊接25 mm厚AH70DB钢板对接接头,焊接接头综合性能良好,能够满足工矿产品的使用要求。  相似文献   

9.
为分析TC11钛合金高温持久试样异常断裂原因,通过光学显微镜(OM)、扫描电子显微镜(SEM)观察分析高温持久异常断裂试样的断口及表面微观形貌,并用能谱仪进行微区成分分析。异常断裂试样表面发生明显氧化和多处开裂,试样断口边部存在多处深褐色氧化凹坑,断口外圆周凹坑处多发生沿晶断裂,心部为韧性断裂。试样表面裂纹区域含有Cl、Mg、Na等元素,是导致试样异常断裂的直接原因。Mg、Na、Cl等元素是由捆绑热电偶的石棉绳引入,在高温环境下试样表面发生热盐应力点腐蚀,随着高温持久试验应力的持续加载试样发生形变,点腐蚀凹坑处产生裂纹并迅速延伸导致试样异常断裂。采用镍铬丝捆绑热电偶时试样表面未发生热盐应力腐蚀,其对TC11钛合金持久性能的影响很小。  相似文献   

10.
308L和347L焊缝金属的氢致滞后断裂行为   总被引:1,自引:0,他引:1  
奥氏体不锈钢 30 8L和 347L的焊缝金属能发生氢致滞后断裂 ,而且比 30 4L母材更敏感。用单边缺口试样动态充氢法测出的氢致滞后断裂门槛应力强度因子 KIH随可扩散氢浓度 C0 的对数而线性下降。 3种材料氢致滞后断口的形貌与 KI 以及 C0 有关 ,当 KI 较高或 C0 较小时是韧窝断口 ;当 KI 较低或 C0 较高时是脆性断口  相似文献   

11.
 采用不同的点焊工艺参数对研发的1700MPa级Si-Mn系热成形淬火钢板与低碳钢板DC04进行异种材料之间点焊,并对焊接接头的拉伸性能、显微硬度分布及微观组织特征等进行了分析。结果表明,焊接电流对点焊接头熔核直径和抗剪强度具有显著的影响,而焊接时间的影响相对较小。超高强度钢板侧的热影响区存在两个明显的软化区和硬化区,即在靠近母材处存在一个硬度明显低于母材的软化区,其组织为回火马氏体;在靠近熔核处存在一个硬度明显高于母材的硬化区,其组织为细小的马氏体。点焊接头熔核部位为柱状粗大马氏体组织,其硬度明显低于超高强度钢板母材且远高于低碳钢板母材。低碳钢板热影响区低的硬度和明显粗化的铁素体组织,使得点焊接头单向拉伸时均从低碳钢板的热影响区一侧破断。  相似文献   

12.
The influence of entrapped helium on microstructural damage and residual mechanical properties subsequent to applying low-penetration gas metal arc (GMA) weld overlays was examined for an AISI Type 304 stainless steel. Two helium levels were examined: 22.5 and 85.0 atomic parts per million (appm) He. Detailed scanning electron microscopy (SEM) revealed the presence of intergranular cracks in the weld heat-affected zone (HAZ). The crack surfaces exhibited a dimple structure that was characteristic of a gas bubble embrittled material. Transmission electron microscopy (TEM) revealed that the size and spacing of the grain boundary helium gas bubbles remained virtually unchanged (relative to that established by the charging and aging procedure) at distances greater than 1 mm from the fusion line. Within this first millimeter, the diameter of the bubbles increased rapidly, and the bubble spacing increased to the characteristic spacing of the dimples that decorated weld-induced cracks. Mechanical testing revealed a loss in strain-to-fracture and ultimate tensile strength (UTS) at the higher helium level. While the majority of the fracture occurred in a transgranular, ductile manner, some deformation-induced intergranular cracking was observed. This cracking occurred over a very narrow region localized to the HAZ of the weldment. At the lower helium level, ductility and strength were unaffected compared to helium-free specimens.  相似文献   

13.
There are efforts to develop modified P91 steel (9Cr-1Mo-V) consumables to optimize strength and fracture toughness in weldments for similar and dissimilar welding of 9Cr-1Mo (modified P91) for both new construction and replacement of serviced components. Fracture toughness is an important consideration which plays a vital role in determining the performance and life of the materials under the given service conditions. Toughness characterization was done by the Crack Tip Opening Displacement (CTOD) method. Welding results in a variety of non-equilibrium microstructures in the HAZ of 9Cr-lMo-V, modified P91 steel. These variations of microstructures from wrought base material through transformed HAZ to cast weld metal, may give rise to considerable inhomogeneity with respect to tensile & creep strength and ductility across the weld joints. However the mechanical properties of the individual regions of HAZ are difficult to obtain because of the small extent over which each region exists. Welded joints are used as structural parts of boilers and pressure vessels working at high temperatures, hence the main requirement is creep resistance. In the present investigation, the fracture toughness characteristics of base metal and weld metal have been evaluated by CTOD method as per the standard BS 7448. The fracture surfaces of the CTOD tested specimens were examined under Scanning Electron Microscope (SEM). Fractographic studies revealed the mode of failure and the characteristics of the fracture surface.  相似文献   

14.
In the present study, the stress corrosion cracking (SCC) behavior of friction-stir-welded AI 6061-T651 alloy was examined of −650 mV vs Ag/AgCl using a slow strain rate testing technique. The resistance to SCC was correlated to the percent change in tensile elongation with exposure to 3.5 pct NaCl aqueous solution with respect to the reference environment. It was demonstrated the the SCC resistance of friction-stir-welded Al 6061-T651 was considerably higher than that of parent material at an anodically applied potential. In friction-stir-welded Al 6061-T651 alloy, the stress corrosion cracks occur only locally in the boundary region between the dynamically recrystallized zone (DXZ) and the heat affected zone (HAZ) regions. However, the HAZ has much lower strength properties compared with the rest of the material, and thus, fracture occurs there despite the increase in stress intensity due to corrosion at the DXZ and HAZ boundary. Eventually, the tensile fracture in friction-stir-welded A1 6061-T651 was relatively unaffected by the SCCs formed in 3.5 pct NaCl aqueous solution.  相似文献   

15.
The deformation and fracture behavior of simulated heat-affected zones (HAZ) within HSLA-100 and HY-100 steel weldments has been studied as a function of stress state using notched and unnotched axisymmetric tensile specimens. For the case of the HSLA-100 steel, the results for fine-grained, as well as coarse-grain HAZ (CGHAZ) material, show that, despite large differences in the deformation behavior when compared to base plate or weld metal, the failure strains are only weakly dependent on the thermal history or microstructure. Ductile microvoid fracture dominates the failure of the HSLA-100 steel with small losses of ductility occurring in the HAZ conditions only at high stress triaxialities. In contrast, the HY-100 steel is susceptible to a large loss of ductility over all of the stress states when subjected to a severe, single-pass simulation of a CGHAZ. The ductility loss is greatest at the high stress triaxiality ratio in which case failure initiation occurs by a combination of localized cleavage and ductile microvoid fracture.  相似文献   

16.
Aiming at the security problems of pipeline steel application, the different positions of the welded joints of circumferentially welding pipeline of X80 steel were investigated by microstructure observation, the hardness, Charpy impact toughness and crack tip opening displacement (CTOD) test at low temperature. The Vickers hardness test results show that there are local softened regions in heat-affected zone (HAZ). Charpy impact test indicate that the ductile–brittle transition temperature of weld is below ??60 °C, the ductile–brittle transition temperature of HAZ is around ??38 °C. CTOD test reveal that the fracture toughness of HAZ shows a large fluctuation since it is in the ductile–brittle transition temperature regime.  相似文献   

17.
 To study the effect of Mg addition on inhibiting weld heat affected zones (HAZ) austenite grain growth of Ti-bearing low carbon steels, two steels with and without Mg treated were prepared using a laboratory vacuum. The welding testing was simulated by Gleeble 3500 thermomechanical simulator. The performance of HAZ was investigated that the toughness was improved from 33 to 185 J by adding 0.005% Mg (in mass percent) to the steel, and the fracture mechanism changed from cleavage fracture to toughness fracture. Through in-situ observation by a confocal scanning laser microscope, a significant result was found that the austenite grain of the steel with Mg treated was still keeping fine-grained structure after holding at 1400 ℃ and lasting for 300 s. This inhibition of austenite grain growth was mainly attributed to the formation of pinning particles after the addition of Mg. The obtained results propose a potential method for improving HAZ toughness of structure steels.  相似文献   

18.
喷射共沉积SiCp/Al复合材料的组织与力学性能   总被引:5,自引:1,他引:4  
用喷射共沉积技术制备了含35vol%SiC的SiCp/Al复合材料,用扫描电镜观察了这种复合材料沉积态的孔隙和SiC颗粒分布。在拉伸实验机上测量了不同工艺条件下制备的SiCp/Al的应力-应变曲线,用扫描电镜观察了雾经前先抽真空,再充氮气保护工艺条件下得到的SiCp/Al经热压后拉伸试样的断口形貌,实验结果表明,沉积态复合材料孔隙数量较少,尺寸较小,SiC分布均匀,雾化前抽真空并充氮气,热压均可提  相似文献   

19.
Aluminum alloy 7050 was friction-stir welded (FSW) in a T7451 temper to investigate the effects on the microstructure and mechanical properties. Results are discussed for the as-welded condition (as-FSW) and for a postweld heat-treated condition consisting of 121 °C for 24 hours (as-FSW + T6). Optical microscopy and transmission electron microscopy (TEM) examination of the weld-nugget region show that the FS welding process transforms the initial millimeter-sized pancake-shaped grains in the parent material to fine 1 to 5 μm dynamically recrystallized grains; also, the FS welding process redissolves the strengthening precipitates in the weld-nugget region. In the heat-affected zone (HAZ), the initial grain size is retained, while the size of the strengthening precipitates and of the precipitatefree zone (PFZ) is coarsened by a factor of 5. Tensile specimens tested transverse to the weld show that there is a 25 to 30 pct reduction in the strength level, a 60 pct reduction in the elongation in the as-FSW condition, and that the fracture path is in the HAZ. The postweld heat treatment of 121 °C for 24 hours did not result in an improvement either in the strength or the ductility of the welded material. Comparison of fatigue-crack growth rates (FCGRs) between the parent T7451 material and the as-FSW + T6 condition, at a stress ratio of R = 0.33, shows that the FCG resistance of the weldnugget region is decreased, while the FCG resistance of the HAZ is increased. Differences in FCGRs, however, are substantially reduced at a stress ratio of R = 0.70. Analysis of residual stresses, fatigue-crack closure, and fatigue fracture surfaces suggests that decrease in fatigue crack growth resistance in the weld-nugget region is due to an intergranular failure mechanism; in the HAZ region, residual stresses are more dominant than the microstructure improving the fatigue crack growth resistance.  相似文献   

20.
In the present research, microstructure and mechanical properties of 2205 duplex stainless steel/A517 quench and tempered low alloy steel dissimilar joint were investigated. For this purpose, gas tungsten arc welding was used with ER2209 filler metal. Characterizations were conducted by optical microscopy, scanning electron microscopy equipped with an energy dispersive spectroscopy and X-ray diffraction. Mechanical properties were evaluated in micro-hardness, tensile and impact tests. Microstructure in the weld zone included an austenitic continuous network in the matrix of primary ferrite. No brittle phases were formed in the weld metal and stainless steel heat affected zone (HAZ). The weld metal/A517 interface showed higher hardness than other regions. Tensile tests indicated that the values of the yield and tensile strength were 663 and 796 MPa, respectively. Impact tests indicated that the weld zone had almost the same impact energy as base metals. The minimum impact energy of 12 J was related to A517 HAZ. The results of scanning electron microscopy for fracture surfaces indicated that weld zone, 2205 HAZ and A517 HAZ had ductile, ductile–brittle and brittle fracture mode, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号