首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用竹粉填充聚氯乙烯,研究了竹粉碱处理、竹粉用量及粒径对复合材料性能的影响。发现对竹粉进行碱处理后偶联剂处理可提高复合材料的拉伸强度和;中击强度,竹粉用量的增加、粒径增大会使复合材料拉伸强度和冲击强度下降。  相似文献   

2.
漂珠改性天然橡胶复合材料的性能研究   总被引:4,自引:2,他引:2  
利用Si-6偶联剂改性漂珠,通过直接共混法将改性的漂珠和NR制备漂珠/NR复合材料.研究复合材料的拉伸性能、硬度、热性能变化规律,并利用SEM研究试样拉伸断裂机理.结果表明:改性后漂珠的粒径减小,呈不规则的块状结构.与半补强炭黑/NR相比,漂珠/NR复合材料的断裂伸长率提高,拉伸强度未见变小,硬度减小.价格低廉的漂珠能替代炭黑作橡胶补强材料.  相似文献   

3.
芦苇纤维/聚氯乙烯复合材料的研究   总被引:1,自引:0,他引:1  
采用芦苇纤维填充聚氯乙烯,研究了芦苇纤维预处理、芦苇纤维含量、粒径大小对复合材料性能的影响。发现对芦苇纤维进行碱处理、偶联处理可提高复合材料的拉伸强度,但冲击强度略有下降;芦苇纤维含量的增加、粒径增大会使复合材料拉伸强度、冲击强度下降。  相似文献   

4.
我们研究了偶联剂类型、处理方法、所用聚合物种类对漂珠/聚合物体系的界面形态和力学性能的影响。漂珠是由粉煤灰中提取的比重不到0.4、熔点约1400℃的空心微珠,用硅偶联剂和钛酸酯偶联剂的水溶液预处理或掺混入树脂中,制成漂珠/不饱和聚酯和漂珠/糠叉丙酮环氧复合材料。结果表明:KH550和Tc-6对这二种复合材料的干湿强度都有较大提高,但KH550对漂珠/糠叉丙酮环氧复合体系的湿强改进更明显。由SEM断面形态也可看到漂珠用偶联剂浸泡后,在其表面产生一层有机聚硅氧烷或聚钛酸酯膜,制得的复合材料用水煮后,该膜也不易脱落。  相似文献   

5.
通过熔融密炼法制备热塑性木薯淀粉(TPS)/二氧化硅(SiO2)复合材料,研究SiO2用量、粒径、表面改性对TPS力学性能和加工行为的影响。研究结果表明,随着SiO2用量的增加,TPS拉伸强度和冲击强度先上升后下降,当SiO2用量为2phr时,拉伸强度和冲击强度最高,分别达到18.24 MPa,23.38kJ/m2。添加纳米SiO2的TPS比微米SiO2的TPS拉伸强度高。经过硅烷偶联剂KH550表面处理后SiO2能更有效提高TPS的拉伸强度和断裂强度,且改性后SiO2在TPS中分散均匀。随着SiO2用量的增加,TPS的塑化时间缩短,塑化峰和平衡转矩增大。TPS/纳米SiO2复合材料的塑化转矩和平衡转矩低于TPS/微米SiO2复合材料,经过表面处理的SiO2能缩短TPS塑化时间、降低塑化转矩。  相似文献   

6.
采用熔融共混方法制备了二醋酸纤维素(CA)/三醋酸甘油酯(GT)/滑石粉(Talc)(CA/GT/Talc)复合材料。研究了滑石粉的粒径、表面处理工艺和添加量对复合材料力学性能、耐热性能、转矩流变性能及微观结构的影响。结果表明,滑石粉的加入有效改善了复合材料的力学性能。并且滑石粉的粒径越小越有利于复合体系的力学性能的提高。5000目滑石粉经过表面处理后对复合体系的力学性能效果更好。复合材料的拉伸强度、断裂伸长率及冲击强度随着滑石粉用量的增加呈先上升后下降的趋势,在5000目改性滑石粉用量为2%(wt,质量分数)条件下,制得的CA/GT/Talc复合材料与未添加滑石粉的CA/GT体系相比,拉伸强度从62.00MPa提高至81.63MPa,断裂伸长率从13.8%增加至52.0%,缺口冲击强度为17.05kJ/m~2,增加约4倍。  相似文献   

7.
本论文通过采用超微粉碎的方法对杜仲翅果壳进行粉碎、筛选、烘干后与聚氯乙烯(PVC)共混制得PVC木塑复合材料(WPC)。研究了杜仲翅果壳粉的用量及粒径对(未添加DOP及添加DOP)WPC性能的影响。结果表明:经过对添加DOP与未添加DOP的性能对比,发现DOP的加入能够明显改善材料的加工性能,拉伸强度与弯曲强度有明显的降低,而冲击强度则有增加的趋势;随着杜仲翅果壳粉的用量的增加,杜仲翅果壳粉/PVC复合材料的拉伸强度、冲击强度呈现下降趋势,弯曲强度呈现先上升后下降的趋势,硬度基本保持不变,杜仲翅果壳粉的粒径对杜仲翅果壳粉/PVC复合材料的性能影响不大。  相似文献   

8.
以聚丙烯(PP)为基体、不同粒径氮化硼(BN)为填充物,采用熔融共混的方法制备聚丙烯/氮化硼(PP/BN)复合材料。通过耐冲击性能、弯曲性能、拉伸性能分析和热分析,研究BN粒径对PP/BN复合材料性能的影响。结果表明:不同粒径BN均可提高复合材料的冲击强度,试验所用填充PP的两种粒径BN,在填充量为5%时均能让复合材料的冲击强度达到约3.65 kJ/m2,比纯PP基体的冲击强度增加了38.8%;与20μm粒径的BN相比,填充5μm粒径的BN可显著提高复合材料的抗弯折能力;填充两种粒径的BN,均能降低复合材料的拉伸强度和断裂伸长率,且在所研究范围内,复合材料的拉伸强度和断裂伸长率与BN粒径关系不大;复合材料的熔体流动速率随两种粒径BN填充量的增大而表现出先增大后逐渐减小的趋势;填充两种粒径BN,均能提高复合材料的结晶温度,降低复合材料的结晶度,但熔融温度变化不大。  相似文献   

9.
采用悬臂梁缺口冲击、差示扫描量热(DSC)、X射线衍射(XRD)和扫描电镜(SEM)等方法研究了蒸汽气流磨制备的超微粉煤灰(UFA)填充对高密度聚乙烯冲击强度、拉伸强度、弯曲强度和结晶度的影响。结果表明,未经表面处理的超微粉煤灰粒子可在聚乙烯中均匀分散;随着UFA含量从0phr增加至80phr,复合体系的刚性提高、结晶度增加,伸长率下降,但拉伸强度下降甚微(从21.76 MPa减少至19.65 MPa)。复合材料的冲击强度在超微粉煤灰添加量为60phr时从纯树脂的27.64 J/m2提高到60.54 J/m2,有大幅度的增加,超微粉煤灰具有明显的刚性粒子增韧作用。  相似文献   

10.
纳米二氧化钛增强增韧不饱和聚酯树脂的研究   总被引:31,自引:0,他引:31  
用未经表面处理和经表面处理的纳米 Ti O2 对不饱和聚酯 ( UP)树脂进行填充改性。研究了纳米Ti O2 用量对不饱和聚酯树脂的拉伸强度、弯曲强度、冲击强度、断裂伸长率的影响。结果表明 ,经表面处理的纳米 Ti O2 用量为 4 %时 ,材料的增韧增强效果最好。用 DSC测定复合材料的玻璃化温度 ( Tg) ,可以发现复合材料的玻璃化温度比纯不饱和聚酯树脂大 ,且经处理的填充的复合材料的 Tg 更高 ,这与力学性能结果相一致  相似文献   

11.
为改善油松木粉与不饱和聚酯树脂(UPR)的界面相容性,采用氢氧化钠处理、偶联剂处理、接枝改性和包覆处理方法对油松木粉进行改性,对改性木粉/UPR复合材料进行冲击和拉伸性能测试;通过观察试样冲击断口形貌,判断两相界面相容性情况。结果表明:木粉经接枝改性后增韧效果最佳,复合材料的冲击强度提高了148.3%;包覆处理后增强效果最佳,复合材料的拉伸强度提高了17.4%。同时碱处理、偶联剂处理和包覆处理能不同程度地提高复合材料的拉伸和冲击性能。接枝改性能大幅提高复合材料的冲击性能,但对拉伸性能提高不明显甚至下降。通过观察试样冲击断口,改性后油松木粉与UPR的界面相容性得到明显改善。  相似文献   

12.
制备了聚丁二酸丁二醇酯(PBS)/竹粉复合材料,考察了偶联剂种类及用量、竹粉用量对PBS/竹粉复合材料的力学性能和生物降解性能的影响。实验结果表明:KH-560偶联剂的表面处理效果优于其他偶联剂,与未用偶联剂相比,复合材料的拉伸强度、冲击强度、热变形温度均有小幅提升,弯曲强度提高了16.3%;当KH-560的用量为5%时,复合材料的综合性能较好,拉伸强度、弯曲强度最高,与纯PBS树脂相比,弯曲强度和弯曲模量分别提高了47.2%和127%;PBS/竹粉复合材料的生物降解速率明显大于纯PBS树脂的降解速率。  相似文献   

13.
目的 探讨木薯秸秆粉的粒径和含量对复合材料物理力学性能及界面结合的影响,以期提高废弃木薯秸秆的利用率。方法 以木薯秸秆粉为增强体,高密度聚乙烯(HDPE)为基体,马来酸酐接枝聚乙烯(MAPE)为偶联剂制备木塑复合材料。对木塑复合材料进行拉伸性能、弯曲性能、缺口冲击强度以及吸水性测试,并利用电子显微镜(SEM)对复合材料断面微观结构进行观察和分析。结果 随着秸秆粉含量的增大,拉伸强度和弯曲强度在整体上呈现出增大的趋势,最大值分别可以达到32.5 MPa和49.6MPa,而缺口冲击强度不断下降;当粒径减小时,材料的拉伸强度呈现先下降而后升高的趋势,弯曲强度区别不大,而缺口冲击强度则整体上呈现降低的趋势。当秸秆粉的含量降低、粒径减小时,复合材料表现出较好耐水性能。结论 秸秆粉质量分数为60%,粒径为40~60目时复合材料具有较优异的综合性能,相关性能超过GB/T 24137—2009《木塑装饰板》的使用标准。  相似文献   

14.
改性纳米碱式氯化镁晶须填充ABS/PP复合材料的力学性能   总被引:1,自引:0,他引:1  
本文通过熔融共混法在接枝了PMMA的碱式氯化镁(g-BMC)表面包覆TPE橡胶层,制得BMC母料,再将其与PP、ABS共混复合制备出ABS/PP复合材料,分别考察了BMC母料、g-BMC以及PP三者不同添加量对复合材料力学性能的影响。结果表明,在试验用量范围内,BMC/ABS复合材料的冲击强度和熔融指数随着BMC填料含量的增加而增大。当BMC母料含量为15%,g-BMC含量为55%时具有较好的冲击性能;当PP含量为9%-10%时,BMC/PP/ABS复合材料的拉伸强度和冲击强度最好;BMC填料含量对复合材料的拉伸强度影响较小,但随其用量增加复合材料的冲击强度有明显提高。  相似文献   

15.
王振军  王宇  蒋玮  肖晶晶 《功能材料》2011,42(5):827-830
为有效减轻车辙深度,掺加多孔玄武岩集料和粉煤灰漂珠,采用"三步"成型工艺制备沥青基复合材料,测试其路用性能,利用光照法研究其隔热功能,并借助扫描电镜(SEM)分析沥青胶浆与集料界面微观结构.结果表明,掺加多孔集料后复合材料路用性能满足相关要求;随粉煤灰漂珠和多孔玄武岩集料体积分数增加,抗压强度、动稳定度和浸水残留稳定度...  相似文献   

16.
粉煤灰空心微珠是从热电厂粉煤灰中精选出来,并进行了除铁、除碳、去杂质等工艺处理而得到的一种新型多功能材料.它可以作为填料填充到聚合物材料中,并改善复合材料的性能.本文中研究了空心微珠作为聚丙烯和硬质聚氯乙烯树脂的填料时,对复合材料综合性能的影响.所用粉煤灰空心微珠颗粒的粒径是2μm和5μm.研究结果表明,当空心微珠填充量在0~30%(质量分数)之间时,空心微珠/PP复合材料的常温和低温下的缺口冲击强度、拉伸性能、弯曲性能都显著提高,复合材料的热性能同时也得到了提高.此外,还研究了空心微珠/UPVC复合材料的流变性能,超细空心微珠加入到硬质PVC管材中,可以明显改善PVC硬管的加工流动性能,显著缩短塑化时间,降低最大扭矩.  相似文献   

17.
植物纤维增强LDPE复合材料的性能研究   总被引:1,自引:1,他引:0  
以纸纤维和低密度聚乙烯(LDPE)为原料,经配方改性后,利用双螺杆挤出机共混挤出造粒,最后注塑成型复合材料试样。研究了纸纤维的用量、相容剂LDPE-g-MAH的用量及发泡剂AC的用量对该复合材料力学性能的影响。结果表明:纸纤维添加质量分数为40%~50%时,复合材料的拉伸性能最佳,弯曲强度较好;LDPE-g-MAH的加入提高了复合材料的力学性能,且当LDPE-g-MAH添加质量分数为5%时,复合材料的综合性能较好;发泡后复合材料的密度下降,但冲击强度、拉伸强度、弯曲强度都有不同程度的提高,当AC添加质量分数为3%时,复合材料的综合性能较佳。  相似文献   

18.
对粉煤灰空心微珠/环氧树脂复合材料进行了弯曲试验,研究了微珠粒径、含量以及级配比例对复合材料弯曲性能的影响,并通过弯曲断口微观形貌分析了内在机理。结果表明,空心微珠的加入对粉煤灰空心微珠/环氧树脂复合材料的弯曲强度影响很大。随空心微珠含量的增加,复合材料的弯曲强度呈现先升高后下降的趋势,填充量为15wt%时,复合材料的弯曲强度最大;随空心微珠粒径的减小,复合材料的弯曲强度随之提高,小粒径微珠对环氧树脂复合材料弯曲强度的提升效果更好;空心微珠级配填充环氧树脂复合材料的弯曲强度主要受级配微珠中小粒径微珠含量的影响,小粒径微珠的比例越大,弯曲强度越高。  相似文献   

19.
采用半连续乳液聚合方法制备了聚丙烯酸丁酯/聚甲基丙烯酸甲酯(PBA/PMMA)核壳结构乳液,经处理制得丙烯酸酯共聚物(ACR),再用ACR对聚碳酸酯(PC)进行增韧改性。研究了引发剂用量、乳化剂配比和用量、交联单体的用量对聚合物乳液的影响,以及ACR含量、核壳比、乳化剂用量和交联单体等对共混物力学性能的影响,并用扫描电镜对共混物冲击断面形貌进行了研究。实验结果表明,随乳化剂用量的增大,乳胶平均粒径减小。在乳化剂用量一定时,随乳化剂中OP-10的增加,乳胶平均粒径增大。在核壳结构乳液中核壳质量比为75/25,交联单体用量为8%,乳化剂用量为3%的条件下,共混物中ACR质量分数为6%时,共混物缺口冲击强度最大,使用交联单体二甲基丙烯酸丁二醇酯(BDDMA)的共混物缺口冲击强度是使用交联单体二甲基丙烯酸乙二醇酯(EGDMA)的共混物缺口冲击强度的2倍。随着ACR含量的增加,PC/ACR的缺口冲击强度增加,拉伸强度和弯曲强度略有下降。扫描电镜表明,ACR在PC/ACR中分散粒径大于乳胶粒径。  相似文献   

20.
通过搅拌铸造法向半固态AZ91D镁合金中添加粉煤灰漂珠(FAC)制备了FAC/AZ91D镁合金复合材料,研究了FAC粒径对该复合材料阻尼性能的影响。结果表明:FAC/AZ91D镁合金复合材料的阻尼性能明显优于基体材料,在FAC含量相同时,FAC的粒径越大,其阻尼性能越好。室温下FAC对提高FAC/AZ91D镁合金复合材料的阻尼性能起重要作用,FAC附近的基体产生了高密度的位错,形成了塑性区。室温下FAC粒径越大,在其附近产生的塑性区越大,阻尼性能越好。随温度的升高,FAC/AZ91D镁合金复合材料的阻尼性能迅速提高。位错、晶界以及FAC和基体之间的界面运动是提高阻尼性能的关键。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号