首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The C-terminal portion of human immunodeficiency virus type 1 p55gag protein, p15gag, contains two functional proteins; p6gag which is required for incorporation of Vpr into the virion, and p7gag which binds to viral RNA and is necessary for packaging of genomic RNA into virions. p7gag protein overexpressed in trans may compete with wild type p55gag for binding to genomic viral RNA, thereby inhibiting incorporation of RNA into the virions. To investigate if overexpression of the C-terminal portion of p55gag could interfere with generation of infectious virus, a plasmid producing a protein consisting of p2gag, p7gag and p6gag, termed p15gag*, was generated and cotransfected with an infectious proviral human immunodeficiency virus type 1 clone. Cells overexpressing p15gag* in trans produced approximately 40 fold less infectious virus than cells lacking exogenous p15gag*. These results demonstrated that expression of the C-terminal portion of p55gag efficiently reduced virus infectivity.  相似文献   

3.
Encapsidation of HIV-1 genomic RNA is mediated by specific interactions between the RNA packaging signal and the Gag protein. During maturation of the virion, the Gag protein is processed into smaller fragments, including the nucleocapsid (NC) domain which remains associated with the viral genomic RNA. We have investigated the binding of glutathione- S -transferase (GST) Gag and NC fusion proteins from HIV-1, to the entire HIV-1 and -2 leader RNAencompassing the packaging signal. We have mapped the binding sites at conditions where only about two complexes are formed and find that GST-Gag and GST-NC fusion proteins bind specifically to discrete sites within the leader. Analysis of the HIV-1 leader indicated that GST-Gag strongly associates with the PSI stem-loop and to a lesser extent with regions near the primer binding site. GST-NC binds the same regions but with reversed preferences. The HIV-1 proteins also interact specifically with the 5'-leader of HIV-2 and the major site of interaction mapped to a stem-loop, with homology to the HIV-1 PSI stem-loop structure. The different specificities of Gag and NC may reflect functionally distinct roles in the viral replication, and suggest that the RNA binding specificity of NC is modulated by its structural context.  相似文献   

4.
The capsid protein of feline calicivirus (FCV) was expressed by using plasmids containing cytomegalovirus, simian virus 40, or T7 promoters. The strongest expression was achieved with the T7 promoter and coinfection with vaccinia virus expressing the T7 RNA polymerase (MVA/T7pol). The FCV precursor capsid protein was processed to the mature-size protein, and these proteins were assembled in to virus-like particles.  相似文献   

5.
6.
Hepatitis C virus (HCV) is a positive-strand RNA virus whose genome is replicated by a direct RNA-to-RNA mechanism. Initiation of negative-strand RNA synthesis is believed to proceed from the 3' end of the genomic RNA. The high conservation of the 3' terminus suggests that this region directs the assembly of proteins required for the initiation of RNA replication. We sought to determine whether host proteins bind specifically to this RNA structure. We observed specific binding of cellular proteins to labeled 3'-terminal RNA by mobility shift analysis. UV crosslinking revealed that the predominant 3'-terminal RNA-binding protein migrates as a single, 60-kDa species that can be precipitated by monoclonal antibodies directed against heterogeneous nuclear ribonucleoprotein I, also called polypyrimidine tract-binding protein (hnRNP-I/PTB), a protein previously shown to bind to the 5' internal ribosome entry site (IRES) of the HCV genome. Purified hnRNP-I/PTB also bound selectively to the 3' end of the HCV genome. hnRNP-I/PTB binding requires the upstream two stem-loop structures (SL2 and SL3) but not the most 3'-terminal stem-loop (SL1). Minor alteration of either the stem or loop sequences in SL2 or SL3 severely compromised hnRNP-I/PTB binding, suggesting extremely tight RNA structural requirements for interaction with this protein. hnRNP-I/PTB does not bind to either end of the antigenomic RNA strand and binds to the 5' IRES element of the genome at least 10-fold less avidly than to the 3' terminus. The strong, selective, and preferential binding of hnRNP-I/PTB to the 3' end of the HCV genome suggests that it may be recruited to participate in viral replication, helping to direct initiation of negative-strand RNA synthesis, stabilize the viral genome, and/or regulate encapsidation of genomic RNA.  相似文献   

7.
8.
Poly(rC) binding protein 2 (PCBP2) forms a specific ribonucleoprotein (RNP) complex with the 5'-terminal sequences of poliovirus genomic RNA, as determined by electrophoretic mobility shift assay. Mutational analysis showed that binding requires the wild-type nucleotide sequence at positions 20-25. This sequence is predicted to localize to a specific stem-loop within a cloverleaf-like secondary structure element at the 5'-terminus of the viral RNA. Addition of purified poliovirus 3CD to the PCBP2/RNA binding reaction results in the formation of a ternary complex, whose electrophoretic mobility is further retarded. These properties are consistent with those described for the unidentified cellular protein in the RNP complex described by Andino et al. (Andino R, Rieckhof GE, Achacoso PL, Baltimore D, 1993, EMBO J 12:3587-3598). Dicistronic RNAs containing mutations in the 5' cloverleaf-like structure of poliovirus that abate PCBP2 binding show a decrease in RNA replication and translation of gene products directed by the poliovirus 5' noncoding region in vitro, suggesting that the interaction of PCBP2 with these sequences performs a dual role in the virus life cycle by facilitating both viral protein synthesis and initiation of viral RNA synthesis.  相似文献   

9.
Crystal structure of an RNA bacteriophage coat protein-operator complex   总被引:2,自引:0,他引:2  
The RNA bacteriophage MS2 is a convenient model system for the study of protein-RNA interactions. The MS2 coat protein achieves control of two distinct processes--sequence-specific RNA encapsidation and repression of replicase translation--by binding to an RNA stem-loop structure of 19 nucleotides containing the initiation codon of the replicase gene. The binding of a coat protein dimer to this hairpin shuts off synthesis of the viral replicase, switching the viral replication cycle to virion assembly rather than continued replication. The operator fragment alone can trigger self-assembly of the phage capsid at low protein concentrations and a complex of about 90 RNA operator fragments per protein capsid has been described. We report here the crystal structure at 3.0 A resolution of a complex between recombinant MS2 capsids and the 19-nucleotide RNA fragment. It is the first example of a structure at this resolution for a sequence-specific protein-RNA complex apart from the transfer RNA synthetase complexes. The structure shows sequence-specific interactions between conserved residues on the protein and RNA bases essential for binding.  相似文献   

10.
11.
12.
Giardiavirus encapsidates a 6.2-kb double-stranded (ds) RNA within a capsid that consists of a major 100-kDa capsid protein (p100) and a minor 190-kDa protein (p190). In this study, two nonhomologous 6.2-kb ds RNAs cohabiting in Giardia lamblia trophozoites were found to be separately encapsidated into two distinct virions, one (designated GLV[p100]) whose capsid consists of p100 and p190, and the other (designated GLV[p95]) whose capsid consists of a 95-kDa protein (p95) and a minor p190-equivalent protein. Both types of virions were enriched in the membranous fraction of a lysate from virus-infected G. lamblia cells. Separation of these virions was achieved by CsCl gradient centrifugation following osmotic rupture of the viral particles. By these treatments, the 6.2-kb ds RNA was removed from GLV[p100] whereas that in GLV[p95] remained unchanged, and the two 6.2-kb ds RNAs that had been purified by this protocol displayed differential hybridization properties to viral cDNA probes. Western blotting and peptide mapping experiments show that p100 and p95 were closely related proteins, but each had distinct amino acid sequences. Virus purification and pulse-chase experiments show that GLV[p100] was selectively secreted into the medium whereas GLV[p95] remained within the trophozoites of G. lamblia toward the late phase of cell growth. Secretion of GLV[p100] was not inhibited by Brefeldin A. These findings demonstrate the cohabitation of multiple Giardiavirus species in G. lamblia.  相似文献   

13.
The role of the nucleocapsid protein of HIV-1 Gag in virus assembly was investigated using Gag truncation mutants, a nucleocapsid deletion mutant, and point mutations in the nucleocapsid region of Gag, in transfected COS cells, and in stable T-cell lines. Consistent with previous investigations, a truncation containing only the matrix and capsid regions of Gag was unable to assemble efficiently into particles; also, the pelletable material released was lighter than the density of wild-type HIV-1. A deletion mutant lacking p7 nucleocapsid but containing the C-terminal p6 protein was also inefficient in particle release and released lighter particles, while a truncation containing only the first zinc finger of p7 could assemble more efficiently into virions. These results clearly show that p7 is indispensable for virus assembly and release. Some point mutations in the N-terminal basic domain and in the basic linker region between the two zinc fingers, which had been previously shown to have reduced RNA binding in vitro [Schmalzbauer, E., Strack, B., Dannull, J., Guehmann, S., and Moelling, K. (1996). J. Virol. 70: 771-777], were shown to reduce virus assembly dramatically when expressed in full-length viral clones. A fusion protein consisting of matrix and capsid fused to a heterologous viral protein known to have nonspecific RNA binding activity [Ribas, J. C., Fujimura, T., and Wickner, R. B. (1994) J. Biol. Chem. 269: 28420-28428] released pelletable material slightly more efficiently than matrix and capsid alone, and these particles had density higher than matrix and capsid alone. These results demonstrate the essential role of HIV-1 nucleocapsid in the virus assembly process and show that the positively charged N terminus of p7 is critical for this role.  相似文献   

14.
Flock house virus (FHV) is a small icosahedral insect virus with a bipartite, messenger-sense RNA genome. Its T=3 icosahedral capsid is initially assembled from 180 subunits of a single type of coat protein, capsid precursor protein alpha (407 amino acids). Following assembly, the precursor particles undergo a maturation step in which the alpha subunits autocatalytically cleave between Asn363 and Ala364. This cleavage generates mature coat proteins beta (363 residues) and gamma (44 residues) and is required for acquisition of virion infectivity. The X-ray structure of mature FHV shows that gamma peptides located at the fivefold axes of the virion form a pentameric helical bundle, and it has been suggested that this bundle plays a role in release of viral RNA during FHV uncoating. To provide experimental support for this hypothesis, we generated mutant coat proteins that carried deletions in the gamma region of precursor protein alpha. Surprisingly, we found that these mutations interfered with specific recognition and packaging of viral RNA during assembly. The resulting particles contained large amounts of cellular RNAs and varying amounts of the viral RNAs. Single-site amino acid substitution mutants showed that three phenylalanines located at positions 402, 405, and 407 of coat precursor protein alpha were critically important for specific recognition of the FHV genome. Thus, in addition to its hypothesized role in uncoating and RNA delivery, the C-terminal region of coat protein alpha plays a significant role in recognition of FHV RNA during assembly. A possible link between these two functions is discussed.  相似文献   

15.
Human calicivirus Sapporo (SV) has typical calicivirus morphology and causes acute gastroenteritis in children. The nucleotide sequence of 3.2 kb of the 3' end of SV was determined from a cloned cDNA. The 3' end of the SV genome is predicted to encode the RNA-dependent RNA polymerase region, the capsid protein and two small open reading frames. The nonstructural and capsid protein coding sequences in the SV genome are fused in a single open reading frame. The organization of these proteins in the SV sequence is similar to that of rabbit hemorrhagic disease virus and the recently described Manchester virus, and distinct from the genome organization of the prototype human calicivirus, Norwalk virus, that lacks typical calicivirus morphology and has been described as a small round structured virus (SRSV). Sequence analysis of the predicted capsid region showed that the SV capsid is longer by approximately 30 amino acids than the capsid of any of the SRSVs, and multiple sequence alignments showed that these additional amino acids are located in the variable region of the capsid protein. Expression of the capsid protein of SV in insect cells resulted in the self-assembly of virus-like particles that have a morphology similar to that of the native virus. This result shows that calicivirus morphology is determined by the primary sequence of the capsid protein.  相似文献   

16.
17.
Viral protein X (Vpx) is a human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus accessory protein that is packaged into virions in molar amounts equivalent to Gag proteins. To delineate the processes of virus assembly that mediate Vpx packaging, we used a recombinant vaccinia virus-T7 RNA polymerase system to facilitate Gag protein expression, particle assembly, and extracellular release. HIV genes were placed under control of the bacteriophage T7 promoter and transfected into HeLa cells expressing T7 RNA polymerase. Western immunoblot analysis detected p55gag and its cleavage products p39 and p27 in purified particles derived by expression of gag and gag-pol, respectively. In trans expression of vpx with either HIV-2 gag or gag-pol gave rise to virus-like particles that contained Vpx in amounts similar to that detected in HIV-2 virus produced from productively infected T cells. Using C-terminal deletion and truncation mutants of HIV-2 Gag, we mapped the p15 coding sequence for determinants of Vpx packaging. This analysis revealed a region (residues 439 to 497) downstream of the nucleocapsid protein (NC) required for incorporation of Vpx into virions. HIV-1/HIV-2 gag chimeras were constructed to further characterize the requirements for incorporation of Vpx into virions. Chimeric HIV-1/HIV-2 Gag particles consisting of HIV-1 p17 and p24 fused in frame at the C terminus with HIV-2 p15 effectively incorporate Vpx, while chimeric HIV-2/HIV-1 Gag particles consisting of HIV-2 p17 and p27 fused in frame at the C terminus with HIV-1 p15 do not. Expression of a 68-amino-acid sequence of HIV-2 containing residues 439 to 497 fused to the coding regions of HIV-1 p17 and p24 also produced virus-like particles capable of packaging Vpx in amounts similar to that of full-length HIV-2 Gag. Sucrose gradient analysis confirmed particle association of Vpx and Gag proteins. These results demonstrate that the HIV-2 Gag precursor (p55) regulates incorporation of Vpx into virions and indicates that the packaging signal is located within residues 439 to 497.  相似文献   

18.
19.
The Semliki Forest virus capsid protein is a multifunctional protein which packages genomic RNA into nucleocapsid structures and binds to viral spike protein during budding. In addition, the capsid protein has an autoproteolytic activity whereby the C-terminal tryptophan is used as the substrate for cotranslational cleavage of the viral structure polyprotein. The autoproteolytic domain of the capsid protein has a chymotrypsin-like fold but has two additional short beta-strands which place the tryptophan into the active site. Here, we have substituted the C-terminal tryptophan of Semliki Forest virus capsid protein for alanine, arginine and phenylalanine and analysed the effects on different functions of the C protein such as nucleocapsid formation, spike binding and autoproteolytic activity. We found that (i) tryptophan is a better substrate for the autoproteolytic activity, (ii) the wild-type tryptophan is the only residue that allows efficient viral growth and (iii) an aromatic residue is important for correct initial folding and stability of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号