首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 231 毫秒
1.
含铝炸药水中爆炸能量输出结构   总被引:10,自引:4,他引:10  
周霖  徐更光 《火炸药学报》2003,26(1):30-32,36
通过测定、计算、分析不同类型炸药水中爆炸能量输出参数,揭示了不同类型炸药在水中爆炸能量输出特性,分析了高威力含铝炸药组成铝氧比对水中爆炸能量输出结构的影响。研究结果表明,在一定的对比距离上,当铝氧比为0.35—0.40时,水中爆炸冲击波能达到最高;当铝氧比增大到1.00时,其水中爆炸的气泡能接近最大值。这种方法可使水中爆炸装置能量输出结构与爆炸目标的易损性相匹配,借以提高温炸毁伤效果。  相似文献   

2.
通过水下爆炸实验测定了不同铝氧比炸药的水下爆炸参数和能量参数,分析了铝氧比对该炸药体系冲击波峰值压力、比冲击波能、比气泡能以及能量输出结构的影响,拟合了铝氧比与能量输出结构的关系。结果表明,随着铝氧比的增加,炸药的峰值超压逐渐减小,比冲击波能先增大后减小,铝氧比约为0.3时达最大,比气泡能和气泡脉动周期均一直增大;比冲击波能所占总能量的比例减小,比气泡能比例先增加后减小;控制铝氧比为0.6左右时,炸药的能量利用率最高。  相似文献   

3.
炸药爆炸能量的水中测试与分析   总被引:4,自引:0,他引:4  
介绍了炸药爆炸能量的水中测试方法,对TNT和3种新设计的含铝炸药进行了水中爆炸的实验研究,比较了各炸药的爆炸性能.结果表明,发现冲击波峰值超压、冲量和冲击波能流密度等参数较好地符合爆炸相似律,得到了新配方各参数的爆炸相似律系数.计算了炸药的冲击波能和气泡能,并提出了计算爆炸总能量的方法.把实验测得的炸药的总能量与KHTR程序计算的爆热进行对比,二者符合得较好,说明了KHTR程序可用.  相似文献   

4.
含铝炸药圆筒试验与数值模拟   总被引:3,自引:0,他引:3  
采用圆筒试验研究了两种直径(50 mm和100 mm)含铝炸药的作功能力,获得了圆筒壁膨胀位移与时间的关系.利用有限元动力学程序LS-DYNA,采用Lee-Tarver点火增长三项式模型对两种含铝炸药的圆筒实验进行了数值模拟.通过与实验结果相比较,得到了含铝炸药的爆轰产物JWL状态方程和反应速率函数的参数,较好地再现了两种含铝炸药圆筒试验结果的参数.Lee-Tarver点火增长三项式模型能够较好地反映含铝炸药后期能量释放驱动圆筒壁膨胀的过程.  相似文献   

5.
RDX基含铝炸药水中爆炸近场冲击波特性   总被引:2,自引:1,他引:1  
通过水中爆炸试验,得到了RDX基含铝炸药在不同比例距离((-R))处的水中冲击波峰值压力、冲量和冲击波能.结果表明,在测试范围内,(-R)<1.5 m/kg1/3,Al的质量分数为10%~20%时,冲击波峰值压力基本不变;(-R)≥1.5 m/kg1/3时,Al的质量分数为0~30%时,冲击波峰值压力基本不变.测试范围内,Al的质量分数为20%~30%时,冲量基本不变;Al的质量分数小于20%,冲量随Al含量的增加不断增大.(-R)<1.0 m/kg1/3时,冲击波能随比例距离的增加而不断衰减;(-R)≥1.0 m/kg1/3时,冲击波能随比例距离的增加基本保持不变.(-R)=0.79 m/kg1/3(药柱18倍半径处)时,冲击波能量利用率只有25%左右,初始冲击波能损失了近1/2~3/5.  相似文献   

6.
将RDX基铝纤维炸药和RDX基含铝炸药进行水下爆炸实验,得到两种炸药在不同位置的压力-时程曲线,经过计算得到两种炸药水下爆炸的能量,并以含铝炸药的能量为铝纤维炸药的参考能量,分析两者的差异及造成差异的原因。结果表明,与含铝炸药相比,铝纤维炸药的压力峰值与冲量降低,铝纤维炸药的比冲击波能降低11%~22%,比气泡能降低11%~15%,比爆炸能降低11%~18%。铝纤维炸药的比爆炸能占爆热的73%~82%,低于含铝粉炸药比爆炸能与爆热的比值(89%~94%)。铝纤维炸药能量未达到其参考能量的主要原因是铝纤维直径较大导致反应不充分以及熔喷法制成的铝纤维中Al2O3含量较高。  相似文献   

7.
为研究爆炸载荷结构与目标响应的关系,对钝化RDX和含铝炸药DHL进行了静爆试验,获得了作用在目标靶板上的超压、冲量的实测数据,并与TNT静爆试验结果进行了对比.以实测RDX和DHL的超压曲线作为初始参数,通过数值模拟研究了目标靶板在不同爆炸载荷作用下的动力学响应.结果表明,在钝化RDX和DHL爆炸载荷的作用下,目标板中心处的初始等效应力、位移几乎相同;目标板初期的动力学响应与爆炸载荷的强度有关,载荷越强目标的应力越大;而目标板的主体响应是由载荷强度和冲量共同影响的.  相似文献   

8.
DNTF基含硼和含铝炸药的水下能量   总被引:1,自引:0,他引:1  
理论计算了DNTF基含硼和含铝炸药的爆炸性能参数,通过水下能量及爆热测试研究了它们的能量特性。结果表明,含硼质量分数15%的DNTF基炸药水下能量可达到2.1倍TNT当量,并出现最大值。含铝质量分数10%-50%的DNTF基炸药的水下能量随铝含量的增加呈上升趋势,其最大值可达到2.67倍TNT当量。当铅或硼的质量分数低于18%时,含硼DNTF炸药的能量高于含铝炸药。硼铝联用,也可获得较好的能量特性。  相似文献   

9.
通过爆炸光辐射特性试验研究,获取了含铝炸药装药在不同反应阶段的可见光、红外光时程曲线,计算了不同波段光辐射的能量利用率;基于含铝炸药的爆炸能量输出结构,分析了含铝炸药爆炸光辐射能量输出特性和激发特性规律。结果表明,可见光、中波红外和长波红外3个频段的光辐射强度分别在含铝炸药爆炸爆轰反应阶段、无氧燃烧反应阶段和有氧燃烧反应阶段达到最大峰值,与不同阶段的反应机制和释能特性吻合;含铝炸药常规爆炸的光辐射在试验工况测量波段的能量利用率为5.91%,与核爆炸模式的光辐射转化率存在数量级上的差异,但通过优化炸药配方设计和复合装药结构等技术途径仍可能有较大的提升空间,可为光电对抗提供新型技术途径。  相似文献   

10.
用圆筒试验研究了Φ25 mm和Φ50 mm含铝炸药的JWL状态方程,采用解析求解和二维数值模拟,得到了两种含铝炸药的JWL状态方程参数.结果表明,压装含铝炸药的后加速能力较强.含铝炸药的加速能力与JWL状态方程参数与尺寸有关.  相似文献   

11.
庞军 《火炸药学报》2009,32(5):37-40
采用AUTODYN软件对不同起爆方式下TNT装药水中爆炸模型进行了数值计算,并对计算结果进行了实验验证.根据计算结果分析了中心起爆、端面中心起爆和端面面起爆情况下,在装药不同方位的水中冲击波压力峰值随距离的变化趋势.计算结果表明,端面起爆状态下,装药径向的冲击波压力峰值均大于端部;中心起爆状态下,一定距离处,装药端面的压力峰值大于径向.改变起爆方式,可以实现水中爆炸冲击波能量的定向增益,提高特定方位爆炸能量利用率.  相似文献   

12.
对不同厚度挠性炸药加载不同基底材料接触爆炸产生的冲量加载进行了一维数值模拟计算.采用自行研制的直线运动式冲量探头对一种0.4mm厚度的挠性炸药接触爆炸产生的冲量载荷进行了测量,得出该厚度炸药的比冲量为1234 Pa·s,数值模拟结果与实验结果符合较好.计算结果表明,挠性炸药的加载冲量与其厚度成比例增加关系;相同厚度的挠...  相似文献   

13.
为研究气体环境、铝粉含量、空间体积对温压炸药能量释放的影响,基于气固两相反应流模型,建立有限差分-物质点耦合算法,对温压炸药密闭容器内爆炸流场演化进行数值模拟及实验验证。结果表明,温压炸药在空气环境中爆炸释放的能量高于氮气中,壁面冲击波峰值压力和空间准静态压力的增幅分别在20%和80%以上,空间准静态压力随空间体积的增大呈先增大后减小的趋势;铝粉含量越高,冲击波在传播过程中衰减得越慢,空间准静态压力越高;铝粉燃烧反应度随空间体积的增加而下降,当比空间体积超过100m3/kg时,反应度下降到90%以下,且铅粉含量越高,其反应程度越低。  相似文献   

14.
为了研究炸药在低强度冲击下的反应特性,根据标准的Steven试验建立了数值计算模型,采用热力耦合模型和Arrhenius方程描述炸药的热反应,对不同速度弹头撞击炸药过程进行了数值模拟计算,获得了炸药点火的弹头阈值速度,分析了弹头形状对炸药反应的影响。计算结果表明,在弹头阈值速度下,炸药点火存在一定的延迟时间,随着弹头速度的增大,延迟时间缩短;弹头形状会影响炸药受力过程,使炸药点火特性发生变化。  相似文献   

15.
铝含量对RDX基含铝炸药爆压和爆速的影响   总被引:4,自引:0,他引:4  
利用锰铜压力传感器和测时仪测量了不同铝含量的RDX基含铝炸药的爆压和爆速。拟合出爆压、爆速与铝含量的关系式,分析了铝含量对RDX基含铝炸药爆压、爆速的影响因素。结果表明,随着铝含量的增加,RDX基含铝炸药的爆压和爆速呈线性减小。计算了铝粉的质量分数在0~40%时所对应的PC-J=A(x)0ρD2中的A(x)值,拟合出A(x)值与铝含量的关系式,得到RDX基含铝炸药爆压与爆速之间的关系式。  相似文献   

16.
定向战斗部破片能量增益的数值模拟   总被引:6,自引:4,他引:6  
利用有限元分析计算方法分别对爆炸网络控制定向战斗部和中心起爆战斗部装药驱动破片过程进行了研究,得到该过程的动画演示过程和各种相关数据。通过对数值模拟数据的处理,得到爆炸网络控制定向战斗部破片速度和数目的分布规律以及爆炸网络控制定向战斗部相对于中心起爆战斗部在增益区内的破片速度增益、数目增益和能量增益结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号