首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于链式条件随机场模型的序列标注中文分词方法随着中文分词评测Bakeoff的展开得到广泛应用。词位标注集和特征模板集对该模型的学习至关重要,但当前的研究大多采用单一的标注集和特征模板集进行实验,缺乏标注集和特征模板集结合的尝试,使得中文分词中未登录词识别率不高,从而影响互联网领域语料的分词效果。首次采用六词位标注集结合TMPT-10和TMPT-10`特征模板,并与常见标注集和特征模板集的组合在Bakeoff语料上进行实验对比,结果表明,改进的方法 6tag-tmpt10取得更好的未登录词召回率,在互联网领域中文分词能取得很好的效果;同时在F值上也与其他最好结果相当。  相似文献   

2.
目前比较流行的中文分词方法为基于统计模型的机器学习方法。基于统计的方法一般采用人工标注的句子级的标注语料进行训练,但是这种方法往往忽略了已有的经过多年积累的人工标注的词典信息。这些信息尤其是在面向跨领域时,由于目标领域句子级别的标注资源稀少,从而显得更加珍贵。因此如何充分而且有效的在基于统计的模型中利用词典信息,是一个非常值得关注的工作。最近已有部分工作对它进行了研究,按照词典信息融入方式大致可以分为两类:一类是在基于字的序列标注模型中融入词典特征,而另一类是在基于词的柱搜索模型中融入特征。对这两类方法进行比较,并进一步进行结合。实验表明,这两类方法结合之后,词典信息可以得到更充分的利用,最终无论是在同领域测试和还是在跨领域测试上都取得了更优的性能。  相似文献   

3.
一种基于字词联合解码的中文分词方法   总被引:8,自引:1,他引:8  
宋彦  蔡东风  张桂平  赵海 《软件学报》2009,20(9):2366-2375
近年来基于字的方法极大地提高了中文分词的性能,借助于优秀的学习算法,由字构词逐渐成为中文分词的主要技术路线.然而,基于字的方法虽然在发现未登录词方面有其优势,却往往在针对表内词的切分效果方面不及基于词的方法,而且还损失了一些词与词之间的信息以及词本身的信息.在此基础上,提出了一种结合基于字的条件随机场模型与基于词的Bi-gram语言模型的切分策略,实现了字词联合解码的中文分词方法,较好地发挥了两个模型的长处,能够有效地改善单一模型的性能,并在SIGHAN Bakeoff3的评测集上得到了验证,充分说明了合理的字词结合方法将有效地提高分词系统的性能,可以更好地应用于中文信息处理的各个方面.  相似文献   

4.
自然语言处理是人工智能发展的重要分支,而中文分词是自然语言处理的第一步,提高中文分词的效率可以提高自然语言处理的结果的准确性。因此提出一种Attention-BIGRU-CRF模型,首先将中文文本通过词向量转换,将文本转换成向量的形式,再利用BIGRU进行序列化学习,随后引入attention机制将BIGRU的输入和输出进行相关性计算获取更精确向量值,最后将该向量值与BIGRU序列化得到的向量值进行拼接作为CRF层的输入并得到标签预测结果。由仿真结果可知,Attention-BIGRU-CRF模型在人民日报2014和MSRA的语料库得到的F1值分别为97.34%和98.25%,处理文本的分词速率为248.1 KB/s。故融合attention机制和BIGRU-CRF网络的模型既能够提高分词准确率,又能提高分词时间和效率。  相似文献   

5.
中文分词是中文信息处理的基础,在语音合成、中外文翻译、中文检索、文本摘要等方面均有重要应用。在中文分词的任务中,存在的主要问题在于可用有效特征较少,分词准确率较低,如何有效的获取和使用分词特征是关键。该文从中文文本生成的过程出发,基于词长噪声的高斯分布特性,提出利用上下文的词长特征作为分词特征。实验表明,在封闭测试中,采用条件随机场模型,使用该特征对现有的实验结果有提高作用。
  相似文献   

6.
刘春丽  李晓戈  刘睿  范贤  杜丽萍 《计算机应用》2016,36(10):2794-2798
为提高中文分词的准确率和未登录词(OOV)识别率,提出了一种基于字表示学习方法的中文分词系统。首先使用Skip-gram模型将文本中的词映射为高维向量空间中的向量;其次用K-means聚类算法将词向量聚类,并将聚类结果作为条件随机场(CRF)模型的特征进行训练;最后基于该语言模型进行分词和未登录词识别。对词向量的维数、聚类数及不同聚类算法对分词的影响进行了分析。基于第四届自然语言处理与中文计算会议(NLPCC2015)提供的微博评测语料进行测试,实验结果表明,在未利用外部知识的条件下,分词的F值和OOV识别率分别达到95.67%和94.78%,证明了将字的聚类特征加入到条件随机场模型中能有效提高中文短文本的分词性能。  相似文献   

7.
基于CRF的先秦汉语分词标注一体化研究   总被引:2,自引:0,他引:2  
该文探索了古代汉语,特别是先秦文献的词切分及词性标注。首先对《左传》文本进行了词汇处理(分词和词性标注)和考察分析,然后采用条件随机场模型(CRF),进行自动分词、词性标注、分词标注一体化的对比实验。结果表明,一体化分词比单独分词的准确率和召回率均有明显提高,开放测试的F值达到了94.60%;一体化词性标注的F值达到了89.65%,比传统的先分词后标注的“两步走”方法有明显提高。该项研究可以服务于古代汉语词汇研究和语料库建设,以弥补人工标注的不足。  相似文献   

8.
中文分词和词性标注任务作为中文自然语言处理的初始步骤,已经得到广泛的研究。由于中文句子缺乏词边界,所以中文词性标注往往采用管道模式完成:首先对句子进行分词,然后使用分词阶段的结果进行词性标注。然而管道模式中,分词阶段的错误会传递到词性标注阶段,从而降低词性标注效果。近些年来,中文词性标注方面的研究集中在联合模型。联合模型同时完成句子的分词和词性标注任务,不但可以改善错误传递的问题,并且可以通过使用词性标注信息提高分词精度。联合模型分为基于字模型、基于词模型及混合模型。本文对联合模型的分类、训练算法及训练过程中的问题进行详细的阐述和讨论。  相似文献   

9.
设计一种组合型的分词机制:基于字典的双向最大匹配,基于字标注的中文分词方法和隐马尔科夫的分词方式。通过实验的结果比较,表明该种组合型的分词方法能够较好地解决中文歧义并发现新的登录词。  相似文献   

10.
实现一个基于条件随机场模型的中文分词工具,同时还提出利用多系统组合来提升中文分词成绩的构想,并用实验数据分析几个系统整合后所具有的分词眷力.实现几个系统的整合并将分词最好的成绩提高0.56个百分点.  相似文献   

11.
上下文是统计语言学中获取语言知识和解决自然语言处理中多种实际应用问题必须依靠的资源和基础。近年来基于字的词位标注的方法极大地提高了汉语分词的性能,该方法将汉语分词转化为字的词位标注问题,当前字的词位标注需要借助于该字的上下文来确定。为克服仅凭主观经验给出猜测结果的不足,采用四词位标注集,使用条件随机场模型研究了词位标注汉语分词中上文和下文对分词性能的贡献情况,在国际汉语分词评测Bakeoff2005的PKU和MSRA两种语料上进行了封闭测试,采用分别表征上文和下文的特征模板集进行了对比实验,结果表明,下文对分词性能的贡献比上文的贡献高出13个百分点以上。  相似文献   

12.
词位标注汉语分词中特征模板定量研究   总被引:1,自引:0,他引:1  
基于字的词位标注的方法能极大地提高汉语分词的性能,该方法将汉语分词转化为字的词位标注问题,词位标注汉语分词中特征模板的设定至关重要,为了更加准确地设定特征模板,从多个角度进行了定量分析,并在国际汉语分词评测Bakeoff2005的PKU和MSRA两种语料上进行了封闭测试,得到如下结论:同等条件下,训练出的模型大小与扩展出的特征数成正比;不同的单字特征模板在同一语料中扩展出的特征数基本相同,单字特征模板对分词性能的贡献要比双字特征模板小得多;增加B特征模板之后,训练时间大大增加,模型大小基本不变,对分词性能都是正增长.  相似文献   

13.
提出一种中文合成词识别及分词修正方法。该方法先采用词性探测从文本中提取词串,进而由提取到的词串生成词共现有向图,借鉴Bellman-Ford算法思想,设计了运行在词共现有向图中识别合成词的算法,即搜索多源点长度最长、权重值满足给定条件的路径,则该路径所对应的词串为合成词。最后,采用核心属性渗透理论对合成词标注词性,同时修正分词结果。实验结果表明,合成词识别正确率达到了91.60%,且分词修正效果良好。  相似文献   

14.
基于BiLSTM-CRF的中医文言文文献分词模型研究   总被引:1,自引:0,他引:1  
王莉军  周越  桂婕  翟云 《计算机应用研究》2020,37(11):3359-3362,3367
由于中医文献内容繁杂数目庞大、专业术语词汇较多,且包含使用文言文、古人口语等多样的书写方式,使用通用领域的分词器进行分词的效果较差。为了解决这一问题,该方法构建了BiLSTM-CRF的模型对中医领域的文献尤其是文言文文献进行分词,并在中医领域文献上对比了BiLSTM-CRF模型、BiLSTM模型及主流通用中文分词器jieba、Ansj的分词结果。结果表明基于Bi-LSTM-CRF模型的分词取得了更优秀的分类性能和鲁棒性。  相似文献   

15.
在基于内容的中文反垃圾邮件技术中,中文分词是必不可少的一个环节。面对大规模的邮件训练样本和大负载的邮件服务器,中文分词算法的时间效率成为中文垃圾邮件过滤技术中的一个瓶颈。对此,提出一种应用在中文垃圾邮件过滤系统中的实时分词算法。该算法采用一种TRIE树型结构作为词典载体并基于最大匹配的原则,同时,在实时分类阶段结合hash表进行特征查询,极大地提高了系统的时间效率。  相似文献   

16.
针对条件随机场分词不具有良好的领域自适应性,提出一种条件随机场与领域词典相结合的方法提高领域自适应性,并根据构词规则提出了固定词串消解,动词消解,词概率消解三种方法消除歧义。实验结果表明,该分词流程和方法,提高了分词的准确率和自适应性,在计算机领域和医学领域的分词结果F值分别提升了7.6%和8.7%。  相似文献   

17.
使用二级索引的中文分词词典   总被引:3,自引:0,他引:3       下载免费PDF全文
中文分词是中文信息处理的基础,在诸如搜索引擎,自动翻译等多个领域都有着非常重要的地位。中文分词词典是中文机械式分词算法的基础,它将告诉算法什么是词,由于在算法执行过程中需要反复利用分词词典的内容进行字符串匹配,所以中文分词词典的存储结构从很大程度上决定将采用什么匹配算法以及匹配算法的好坏。在研究现存分词词典及匹配算法的基础上,吸取前人的经验经过改进,为词典加上了多级索引,并由此提出了一种新的中文分词词典存储机制——基于二级索引的中文分词词典,并在该词典的基础上提出了基于正向匹配的改进型匹配算法,大大降低了匹配过程的时间复杂度。从而提高了整个中文分词算法的分词速度。  相似文献   

18.
汉语分词词典是中文信息处理系统的重要基础,词典算法设计的优劣直接关系着分词的速度和效率。分析了三种典型的分词词典结构,提出了一种具有三级索引的新词典结构,并提出了最大正向匹配的改进型匹配算法,从而降低了匹配过程的时间复杂度。最后通过实验,比较了三种典型词典结构与新词典结构的时间效率。实验结果表明,新词典结构具有更高的词典查询速度和分词速度,可以有效满足中文处理系统的需求。  相似文献   

19.
Chinese word segmentation as morpheme-based lexical chunking   总被引:1,自引:0,他引:1  
Chinese word segmentation plays an important role in many Chinese language processing tasks such as information retrieval and text mining. Recent research in Chinese word segmentation focuses on tagging approaches with either characters or words as tagging units. In this paper we present a morpheme-based chunking approach and implement it in a two-stage system. It consists of two main components, namely a morpheme segmentation component to segment an input sentence to a sequence of morphemes based on morpheme-formation models and bigram language models, and a lexical chunking component to label each segmented morpheme’s position in a word of a special type with the aid of lexicalized hidden Markov models. To facilitate these tasks, a statistically-based technique is also developed for automatically compiling a morpheme dictionary from a segmented or tagged corpus. To evaluate this approach, we conduct a closed test and an open test using the 2005 SIGHAN Bakeoff data. Our system demonstrates state-of-the-art performance on different test sets, showing the benefits of choosing morphemes as tagging units. Furthermore, the open test results indicate significant performance enhancement using lexicalization and part-of-speech features.  相似文献   

20.
中文分词技术对中文搜索引擎的查准率及查全率有重大影响。在剖析开源搜索引擎Nutch的源代码结构的基础上,基于JavaCC实现了一个可扩展的词法分析器并将其与Nutch集成,构建了一个支持智能中文分词的互联网搜索引擎NutchEnhanced。它可用作评测各类中文分词算法对搜索引擎的影响的实验平台。对NutchEnhanced的搜索质量与Nutch、Google、百度进行了对比评测。结果表明它远优于Nutch,其查全率达到了0.74,前30个搜索结果的查准率达到了0.86,总体上具有与Google,百度接近的中文搜索质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号