首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以高密度聚乙烯(PE–HD)和线型低密度聚乙烯(PE–LLD)树脂为原料,采用转矩流变仪,借助熔体拉伸法制备了具有取向结构的PE–HD膜和PE–LLD膜。利用偏光显微镜、傅立叶变换红外光谱、差示扫描量热、小角激光散射及力学性能测试分析不同熔体拉伸速率下PE–HD膜和PE–LLD膜的结构与性能变化情况。结果表明,熔体拉伸速率越高,PE–HD膜和PE–LLD膜的相对取向度越高,快速拉伸PE–HD膜和PE–LLD膜的相对取向度分别为2.043和1.556;熔体拉伸速率对PE–HD膜和PE–LLD膜的结晶温度影响不大,两种膜具有显著的结晶性,PE–HD膜的结晶性更好;随熔体拉伸速率的提高,PE–HD膜和PE–LLD膜的拉伸屈服应力和拉伸弹性模量提高,断裂伸长率降低,总体上看,PE–LLD膜的断裂伸长率较PE–HD膜高,而拉伸强度较PE–HD膜低。  相似文献   

2.
采用双螺杆挤出机制备了一系列的高密度聚乙烯(PE–HD)/木粉(WF)和PE–HD/秸秆粉(SF)复合材料,研究了马来酸酐接枝聚乙烯(PE-g-MAH)及丙烯酸酯接枝聚乙烯(PE-g-AE)的用量对复合材料的拉伸性能、冲击性能和熔体流动速率(MFR)的影响,并对PE–HD/WF与PE–HD/SF复合材料的性能进行了比较。结果表明,PEg-MAH和PE-g-AE均可增韧PE–HD/WF和PE–HD/SF复合材料,PE-g-AE的增韧效果总体上优于PE-g-MAH;PE-g-MAH和PE-g-AE降低了PE–HD/WF复合材料的拉伸强度,但对PE–HD/SF复合材料有一定的增强作用;PE-g-MAH和PE-g-AE可在一定程度上提高PE–HD/WF复合材料的MFR,而PE–HD/SF复合材料的MFR总体上随PE-g-AE用量增加而增大,随PE-g-MAH用量增加而减小;在PE-g-AE作用下,除拉伸强度外,PE–HD/SF复合材料的冲击强度、断裂伸长率、MFR总体上均高于PE–HD/WF复合材料;当PE-g-AE的用量为其与PE–HD总质量的5%时,PE–HD/SF复合材料的综合性能最佳。  相似文献   

3.
为研究聚丙烯(PP)和高密度聚乙烯(HDPE)蜂窝防护结构抗侵彻性能,对比了两种材料拉伸和结构侵彻的试验结果,并建立有限元模型,进行了不同工况下的枪弹侵彻数值模拟,并分析了试验结果、模拟中结构的破坏形式和枪弹的侵彻深度。结果表明:1000m·s~(-1)的枪弹对蜂窝防护结构的侵彻深度在30cm左右,仅达到该结构设计厚度的一半,显示了很好的抗侵彻性能;另外,相较于聚丙烯蜂窝防护结构,高密度聚乙烯蜂窝防护结构在被枪弹侵彻后破坏更小,结构完整性保持更好,对抗枪弹二次打击的能力更强,且有较好的耐久性;同时,高密度聚乙烯蜂窝防护结构对枪弹也有一定的偏航作用,对保护结构背后的人员有着一定积极作用。  相似文献   

4.
以高密度聚乙烯(PE–HD)和乙烯–乙烯醇共聚物(EVOH)为原料,采用微层共挤出装置制备了16层的PE–HD/(EVOH/PE–HD)交替多层材料,研究了共混层中EVOH的相形态和层厚比对微层材料结构与性能的影响。结果表明,当共混层中EVOH含量为50%,EVOH相从一维纤维状转变为大尺寸二维片状结构,氧气渗透系数(OPC)降低了两个数量级,此时片材中EVOH含量仅为8.1%。固定共混层EVOH含量为60%,共混层与PE–HD层的厚度比增加时片材的阻隔性能变化不大;当厚度比仅为0.141时,OPC为10–16数量级,达到超高阻隔性能要求,此时EVOH在片材中含量为8.3%。16层复合材料的断裂伸长率与普通共混物相比大幅提高,韧性优异。  相似文献   

5.
为改善和提升混凝土结构的防护性能,以多层复合防护结构中应力波的传播特性为理论依据并结合梯度功能结构材料基本原理,采用梯度分层化设计方法及多相分层成型法制备技术,设计并制备了一种梯度功能复合防护结构(FGCS).通过对不同弹体侵彻速度下FGCS组靶体和双叠层结构组靶体抗侵彻性能的试验研究,指出弹体成坑面积、成坑深度及侵彻深度与弹体速度间均存在线性的变换关系.同时,相对双叠层结构组靶体,FGCS组靶体表现出优异的抗侵彻性能,且随着弹体侵彻速度的增加,其抗侵彻性能会变得更突出.当弹体速度为950 m/s时,相对双叠层结构组靶体,FGCS组靶体的侵彻深度减少了25.6%.  相似文献   

6.
将高密度聚乙烯(PE–HD)、低密度聚乙烯(PE–LD)、聚乙烯–辛烯共聚弹性体(POE)经双螺杆挤出机制成不同比例的PE–HD/PE–LD材料。采用差示扫描量热(DSC)仪和X射线衍射(XRD)仪分析了不同厚度下PE–HD及其PE–HD/PE–LD复合材料的聚集态结构。DSC实验表明复合材料相容性良好且形成了共晶,XRD结果则显示材料的拉伸强度与其结晶度和晶粒尺寸都有关。  相似文献   

7.
分别以木粉、竹粉、稻壳粉三种木质纤维为填料,高密度聚乙烯(PE–HD)为基体,采用模压成型法制备木塑复合材料,对复合材料的热膨胀性能和热失重特性进行了研究。结果表明,三种木质纤维填充PE–HD复合材料的线性热膨胀系数顺序为:PE–HD/木粉复合材料PE–HD/竹粉复合材料PE–HD/稻壳粉复合材料;PE–HD/木粉复合材料的线性热膨胀系数随着木粉含量的增加和木粉粒径的减小而减小,木粉质量分数为65%、粒径为150μm时,复合材料的线性热膨胀系数最小。PE–HD基木塑复合材料的热分解过程分为两个阶段,第一阶段主要为木质纤维分解阶段,第二阶段主要是PE–HD分解阶段;PE–HD/木粉复合材料起始失重温度高于竹粉和稻壳粉填充的复合材料;且PE–HD/木粉复合材料中木粉含量越高,第一阶段分解速率及失重量越大;木粉粒径越小,复合材料起始分解温度越低。  相似文献   

8.
俄罗斯管道工业发展基金会认为,随着俄罗斯国内对石油、天然气管道需求的不断增加,俄罗斯高密度聚乙烯(PE–HD)消耗量将呈日益上涨之势.因国内供给有限,PE–HD进口量必将大幅增加.若PE–HD进口关税不取消,PE–HD管的生产成本将上涨.因此,该基金会提议政府取消PE–HD管材进口关税.  相似文献   

9.
主要对合成膜用高密度聚乙烯(PE?HD)进行产品结构分析,确定了合成膜专用树脂6903B的技术指标,并通过调整共聚单体添加量、改变聚合工艺条件,在低压聚合装置上成功生产合成膜用PE?HD产品。经过用户的应用试验,证明PE?HD 6903B能够满足不同厚度合成膜的生产要求。  相似文献   

10.
本文利用有限元分析软件LS-DYNA对金属网增强混凝土靶板的抗侵彻性能进行数值研究,结果表明:在混凝土靶板中增加金属网,可以有效抑制弹体动能在靶体内的传播,降低弹体侵彻深度和剩余速度,控制混凝土的局部破坏和弹坑直径,提高混凝土靶板的抗侵彻性能。此外,分析比较金属网参数的变化对混凝土靶板抗侵彻性能的影响,研究发现:增大金属丝丝径、减小金属网孔径、增大金属网层数均可以提高混凝土靶板的抗侵彻性能,而且,当丝径取2 mm,孔径取5 mm,层数取22层时,混凝土靶板的抗侵彻性能最经济有效。  相似文献   

11.
将过氧化二异丙苯(DCP)添加到碱式碳酸镁阻燃高密度聚乙烯/三元乙丙橡胶(PE–HD/EPDM)体系中,采用动态硫化法制备了阻燃PE–HD/EPDM材料。利用热重–差示扫描量热法分析了阻燃PE–HD/EPDM的热稳定性,扫描电子显微镜观察了阻燃PE–HD/EPDM的微观形貌,研究了DCP含量对阻燃PE–HD/EPDM性能的影响。结果表明,DCP的质量分数为1.0%时,阻燃PE–HD/EPDM材料的拉伸强度为9.7 MPa,断裂伸长率为1.2%,缺口冲击强度为39.5 kJ/m2,极限氧指数为30.8%;加入DCP后,PE–HD/EPDM材料的吸热峰有所滞后、燃烧炭层更为致密。  相似文献   

12.
通过苯氧基环三磷腈(PCPZ)、氢氧化镁[Mg(OH)2]添加量以及二者协同对高密度聚乙烯(PE–HD)热性能影响的实验研究,探讨了PCPZ和Mg(OH)2对PE–HD热性能的影响规律,并对其影响原因进行了分析。结果表明,在PE–HD/PCPZ混合体系中,随着PCPZ含量的增加,材料的热稳定性和残炭率也随之增大,当PCPZ质量分数为44%时,800℃时的残炭率为33.3%。PCPZ/Mg(OH)2同时作用于PE–HD时对材料的热稳定性有协同效应,当PCPZ,Mg(OH)2质量分数分别为15%,35%时,协同效果最佳,800℃时的残炭率约为35.2%。  相似文献   

13.
为改善高密度聚乙烯(PE–HD)/聚甲醛(POM)体系的相容性,采用聚乙二醇单甲醚(MPEG)作为相容剂,研究MPEG对PE–HD/POM共混材料性能的影响。结果表明,MPEG的加入提高了PE–HD/POM共混材料的力学性能,实验范围内随着MPEG用量的增加,共混材料的拉伸强度和冲击强度均不断提高;扫描电子显微镜、差示扫描量热及红外光谱分析表明,MPEG的加入改善了共混材料的相容性。  相似文献   

14.
基于数字图像相关法(DIC)研究了加载速率和汽油浸泡时间对高密度聚乙烯(PE–HD)材料拉伸性能的影响。实验表明,PE–HD材料的屈服应力随加载速率的增加而增加,但随加载速率的增大,其对屈服应力的影响逐渐减小;断裂伸长率随加载速率的增加明显减小;屈服应变不随加载速率的改变而改变;计算出各加载速率下材料的拉伸弹性模量大小。经汽油处理过的PE–HD屈服应力和拉伸弹性模量随浸泡时间快速下降随后趋于稳定,材料的强度降低到一个稳定的值。  相似文献   

15.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

16.
根据历年来的气象观测数据,分析了作为国家光伏领跑者基地的山东、江苏、安徽等区域的紫外光辐射量,以此评估经过25年户外应用的高密度聚乙烯(PE–HD)浮体材料需要承受的紫外辐射总量;开发了一种能抗大剂量紫外辐射的改性PE–HD浮体材料,通过人工加速老化试验研究了其大剂量紫外辐射后的关键性能变化;并对比市场上的部分浮体材料,指出了针对PE–HD改性设立相关标准的必要性。  相似文献   

17.
将超高分子量聚乙烯(PE–UHMW)与高密度聚乙烯(PE–HD)按照质量比为6︰4进行共混熔融纺丝,并对初生丝进行高倍热拉伸制得PE–UHMW/PE–HD共混纤维。利用广角X射线衍射、差示扫描量热、声速取向试验等方法研究了PE–UHMW/PE–HD共混纤维在热拉伸过程中的晶体结构演变过程。研究显示,随着热拉伸过程的进行,纤维的分子链沿纤维的轴向取向度逐渐增加,熔融峰温度逐渐升高,结晶度逐渐增加;沿径向的晶粒尺寸逐渐减小,而沿轴向的晶粒尺寸逐渐增加,即形成了更细长的晶粒;晶体的取向度逐渐增加。当拉伸倍数由1增大至6时,上述现象变化显著,当拉伸倍数由9增至15时,上述现象变化缓慢。与PE–HD共混后的纤维结晶度、晶体取向度和分子链取向度更高,晶粒更加细长。  相似文献   

18.
制备了丙烯酸(AA)接枝线型低密度聚乙烯(PE–LLD)(PE–g–AA)高分子偶联剂,并将其用于改性PE–LLD/Al(OH)3复合材料。研究了PE–g–AA对PE–LLD/Al(OH)3复合材料的微观结构、力学性能、流变行为、电气绝缘性能的影响,并探讨了复合材料力学性能、电气绝缘性能和界面微观结构之间的关系。研究结果表明,PE–g–AA偶联剂显著改善了Al(OH)3填料与PE–LLD基体之间的界面作用机制,不但提高了复合材料的拉伸和冲击强度,而且增加了复合材料的断裂伸长率。另外,PE–g–AA提高了Al(OH)3在聚合物基体的分散性并作为绝缘层减少了填料之间的相互接触,因而获得的复合材料的电气绝缘性能在低偶联剂的掺量下大幅提升,达到电气绝缘性能要求。  相似文献   

19.
采用双螺杆挤出机制备了不同含量高密度聚乙烯(PE–HD)/硅酸钙(Ca Si O3)复合材料,并采用马来酸酐接枝聚乙烯作为相容剂对该复合材料进行改性,研究了相容剂含量对复合材料力学性能的影响。结果表明,随着相容剂含量的增加,复合材料的力学性能先增加后保持不变,综合考虑,相容剂含量为10份时,对复合材料的力学性能改性效果最佳。然后以此相容剂含量为基准,研究了Ca Si O3含量对复合材料力学性能和阻燃性能的影响。结果显示,随着Ca Si O3含量的增加,复合材料的冲击强度增加,拉伸强度先下降后上升,氧指数略有增加,垂直燃烧性能变化不大。这表明Ca Si O3的填充对PE–HD具有较好的增韧效果,对阻燃性能也有一定提高。  相似文献   

20.
提出一种由碳化硼陶瓷、UHMWPE层合板、阻尼材料构成的复合靶板。应用LS-DYNA动力学软件进行数值仿真分析,研究该靶板在12.7 mm穿甲爆炸燃烧弹高速冲击下的性能,并通过实验对数值模拟进行可行性验证。进一步研究靶板抗侵彻性能随结构几何参数变化的关系,探究阻尼材料的最佳分布位置和最佳厚度。结果表明:随着陶瓷厚度增大,靶板吸收子弹动能和弹道性能指数呈线性增加;在UHMWPE层合板厚度较大时,增加其厚度对靶板抗侵彻性能的提升更明显;同等面密度条件下,与提高陶瓷或者UHMWPE层合板的厚度相比,涂刷1 mm背层阻尼材料时,复合靶板弹道性能指数最高,抗高速侵彻性能最好,为阻尼材料作为减震层在抗高速冲击领域的广泛应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号