首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
墙背土压力的分布情况与挡土墙变位模式、墙体位移大小密切相关。考虑位移影响的土压力分析方法是在已知墙体位移大小的情况下,才能计算墙背土压力的分布。针对RT(绕墙顶转动)模式下的挡土墙,从满足挡土墙倾覆稳定性和基底不受拉力的角度考虑,利用改进的水平层析法,建立倾覆力矩和抗倾覆力矩的平衡方程,得到了墙底位移未知情况下确定挡土墙主动土压力的一种方法。分析结果表明:墙宽有一个合理的取值区间,在区间内墙宽的土压力大致在库伦土压力和静止土压力之间;随着墙宽的增大,墙背土压力增大,倾覆力矩和抗倾覆力矩随之增大,墙底位移随着墙宽的增大而减小;墙背越光滑,则倾覆力矩越大,满足倾覆稳定所需的墙宽就越大。  相似文献   

2.
建立在半无限土体假定上的朗肯土压力理论和库伦土压力理论,在挡土墙后填土有限的情况下不再适用。针对墙后无黏性填土,采用离散元方法分别对光滑、粗糙墙面平动模式下墙后有限宽度土体主动破坏的过程进行研究,分析了挡土墙运动过程中滑裂带发展、土体位移规律以及墙后水平土压力分布的情况。研究结果表明,墙体光滑情况下,滑裂带呈直线,墙后填土宽高比较小时,可以观察到滑裂带的反射,墙后土体呈多折线破坏模式,滑裂带倾角基本与库伦理论滑裂带倾角相等,且与土体宽高比无关,水平土压力合力受土体宽高比影响亦不大。墙体粗糙情况下,滑裂带呈曲线,反射现象随墙体粗糙程度增加而减弱,滑裂带倾角随土体宽高比增大而减小,最终落于库伦理论滑裂带内侧。此时,存在一临界宽高比,当墙后土体宽高比小于此值时,主动土压力随宽高比增大而增大,大于此值时,主动土压力不受宽高比影响。而无论墙体粗糙与否,墙后土体宽高比越小,达到极限状态所需墙体位移均越小。  相似文献   

3.
基于库仑土压力理论和Dubrova压力重分布法,提出一种改进的重力式挡土墙主动土压力分析方法。该方法能反映挡土墙变位模式和位移大小的影响,还能考虑和挡墙位移相关的墙后填土发挥的内摩擦角对土压力分布的影响。分析结果表明,随着挡土墙顶位移的增大,墙后填土达到极限平衡状态的区域逐渐增大,墙后土压力逐渐减小;只有当墙顶位移充分大时,才能达到库仑主动极限平衡状态,相应的土压力等于库仑主动土压力。  相似文献   

4.
墙后有限宽度无黏性土主动土压力试验研究   总被引:2,自引:0,他引:2  
针对无黏性土体,开展了刚性挡墙平动、绕墙底转动和绕墙顶转动3种墙体主动变位模式情况下墙后有限宽度土体土压力试验。通过观察墙后不同宽度土体的破坏过程及对土压力的全程量测,对其破坏模式及土压力分布规律进行了探讨。试验结果表明,墙后有限宽度土体的破坏面为一连续曲面,随着墙后土体宽度的增加,土体破坏面逐渐向外侧偏移,最终趋于某一固定位置,但始终位于库仑破坏面内侧。土压力值监测表明,库仑土压力理论并不适用于有限宽度土体。当填土宽度为有限宽度时,土压力值小于库仑主动土压力值,其差距随土体宽度减小而逐渐增大。当墙体平动时,土压力值沿墙高先增大后减小;墙体绕墙底转动时土压力值则呈线性增长趋势;而当墙体绕墙顶转动时,在挡墙上部出现了明显的土拱效应。  相似文献   

5.
墙体位移是影响土压力的核心要素。根据Rankine土压力模型,以试样在单剪试验中的剪切过程近似模拟墙后土体由静止进入极限状态的历程,构建土体剪应变与墙体位移在等极限应变条件下的几何方程和基于点应力状态的剪应力与土压力平衡方程,结合以双曲线表达且与几何方程相匹配的剪应变–剪应力理想非线弹塑性物理模型,建立综合反映土体变形与强度特性及初始应力状态影响的墙体位移–土压力函数关系,讨论极限状态下墙体位移的主要影响因素。分析表明:静止与被动(或主动)状态之间的墙体位移–土压力曲线是土体应力–应变特性的宏观体现,两者随变形的增加呈现出相似的变化规律;主动(或被动)状态下的墙体位移随土体极限剪应变、滑移区范围的增加而增大,随静止土压力系数的降低而减小(或增大);工程设计常用力学指标下的粗细粒土进入主动状态时,墙体位移与墙高之比为0.6‰~15.0‰,被动时为-0.5%~-5.9%,理论分析与相关文献模型试验结果吻合。  相似文献   

6.
墙背土压力分布与挡土墙的位移大小、位移模式以及平衡状态密切相关。针对绕墙底向外转动的刚性挡土墙,基于已有的土压力计算理论,结合由卸荷路径三轴试验所建立的填土内摩擦角与挡土墙位移间的关系,提出一种改进的考虑位移影响的主动状态土压力计算方法。分析表明:随着挡土墙位移的发展,墙背土压力由静止土压力逐步减小,当挡土墙位移达到临界值后,相应的墙背土压力均收敛到库仑主动土压力。填土内摩擦角发挥值的分布显著影响墙背土压力分布。非极限平衡状态时,墙背土压力大于库仑主动土压力。  相似文献   

7.
在填土水平且无粘性条件下,通过水平微元法推求悬臂式挡土墙后四边形滑动土楔形成的主动土压力,得到主动土压力合力作用点高度以及方向的变化规律,并利用数值分析方法得出破裂面倾角的计算公式。结果分析表明:主动土压力系数随土体内摩擦角和墙体倾角的增大而减小,墙土摩擦角的影响较小;计算所得主动土压力小于朗肯、库伦土压力;主动土压力呈凸曲线型分布,作用点高度大于三分之一墙高。  相似文献   

8.
墙体侧向位移对土压力有显著影响。基于墙体位移-土压力关系是墙后土体应力应变特征的宏观体现这一基本认识,通过构建Coulomb土压力模型下的几何与平衡方程,将直剪试验中微观的土体单位长度剪切位移ε同剪应力τ关系转化成宏观上的墙体位移与土压力曲线,推导了极限位移可求、涵盖主动至被动状态全过程的墙体位移-土压力计算模型。分析表明:滑移区范围、初始应力状态及土体的ε-τ关系是影响墙体位移-土压力曲线的核心要素;相对于主动区,被动区范围对墙土摩擦作用更加敏感,导致静止与被动状态之间的位移-土压力关系受墙土摩擦影响更加显著;墙后土体初始应力状态对墙体位移的影响主要体现为静止土压力系数K0,随着K0的增大主动与被动状态下的墙体位移相应增加和减小;极限状态下墙体位移与工程经验吻合,理论模型能基本反映土压力随位移的变化规律。  相似文献   

9.
鉴于悬臂式挡土墙在实际运营过程中受外界因素影响多呈现为挡土墙平移和绕墙底转动的组合位移(RBT)变形模式,且墙背填料经常处于潮湿状态,经典土压力理论不能合理反映其实际受力状态。为了揭示土体潮湿状态及RBT模式下悬臂式挡土墙墙后土压力分布规律,设计制作了基于RBT模式的悬臂式挡土墙模型试验装置,并开展了不同RBT转动位移量下的模型试验,得到了RBT模式下悬臂式挡土墙墙后土压力分布规律,并与现有理论对比,验证了试验结果的可靠性。依据测试结果,进行了理论公式验证。结果表明:对悬臂式挡土墙施加向外转动位移时,由于潮湿砂土存在较为明显的假性黏聚力,墙背土压力随墙体转动位移的增大而呈现较为明显的先减小后增大的趋势;随着转角增大,水平土压力减小,且下部土体减小趋势较缓,墙体中部位置水平土压力计算值大于实测值。  相似文献   

10.
挡土墙的土压力绝大多数是非极限状态的。通过准滑移面计算挡土墙非极限状态被动土压力,结果表明,墙后非极限状态被动土压力呈非线性分布,合力随墙体位移的增大而线性增长,其作用点位置逐渐降低,在墙高的下三分点以下。  相似文献   

11.
根据平移模式下的微元滑裂体水平面上的剪力为零的条件和土拱效应,获得受填土内摩擦角和墙土摩擦角影响的非极限滑裂面倾角和非极限主动土压力系数,其中,非极限填土内摩擦角和墙土摩擦角是墙体位移的函数。根据非极限水平微元滑裂体的静力平衡,得到平移模式下考虑土拱效应和位移影响的非极限主动土压力计算式。参数影响分析表明:非极限滑裂面倾角和非极限主动土压力系数均随非极限墙土摩擦角的增大而增大;非极限主动土压力系数和非极限主动土压力均随侧向位移比的增大而减小;非极限主动土压力分别随着非极限填土内摩擦角、非极限墙土摩擦角的增大而减小。理论值及试验值的对比结果显示:相较于其他方法,本文方法的非极限主动土压力理论值与试验值吻合更好。  相似文献   

12.
建立有限差分数值模型对设置EPS(发泡聚苯乙烯)柔性垫层的刚性挡土墙的土压力进行研究,分别对挡土墙后填土的静止、主动及被动三种位移状态进行了研究,并对不同挡土墙位移时EPS垫层减小土压力的效果进行了分析。研究结果表明:EPS对主动状态所需要的位移影响较小。静止–主动状态时,EPS减小土压力的效果随着位移的增大而减弱;静止–被动状态时,EPS减小土压力的效果随着位移的增大先增强后减弱。  相似文献   

13.
挡土墙非极限状态土压力是常态化的。用滑动土楔和水平单元计算概念,就绕墙顶转动加平移之挡土墙被动土压力进行研究。结果表明,RTT位移模式挡土墙非极限被动土压力为上凹曲线分布,合力作用点在墙高的下三分区,随墙体转动和平移量增大,被动土压力非线性增长。墙体转动相对多,合力作用点下移,墙体平移相对较多,合力作用点上移。  相似文献   

14.
传统的Mononobe-Okabe法在实际工程中有着广泛应用,但它仅适用于无黏性土的极限土压力计算,且不能给出土压力分布。基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,假定墙后塑性区的一簇滑移线为直线即平面滑裂面,考虑墙背倾角、地面倾角、土黏聚力和内摩擦角、墙土之间黏结力和外摩擦角、地面均布超载、塑性临界深度以及水平和竖向地震系数等因素的影响,建立较为完善的塑性滑楔分析模型,进而采用极限平衡法求解挡土墙地震主动土压力、滑裂面土反力及其分布,并且通过量纲一化的分析首次提出几何力学相似原理。研究结果表明,总地震主动土压力随水平地震系数代数值的增大而增大;但随竖向地震系数代数值的增大并非总是减小,当水平地震系数较大时,可能出现先减后增的情况。  相似文献   

15.
采用PFC3D颗粒流研究筒形挡土墙土压力随墙体位移的变化规律,分析达到主动极限状态时墙周土体的应力、孔隙率等因素的变化规律。结果表明:作用在筒形挡土墙上的土压力随着墙体位移的增加,土压力逐渐减小,最后趋于定值。达到极限平衡状态时,墙后土体中主应力偏转,形成了小主应力拱轨迹;高度h较小时,靠近墙体处形成了环拱效应,环向应力增大,孔隙率减小;随着高度h逐渐增大,环拱效应区域逐渐远离墙体,环拱效应减弱。将数值模拟结果与现有理论结果比较可知,现有理论中均未考虑空间拱效应,得到的结果与数值模拟结果存在差异。  相似文献   

16.
本文主要研究挡土墙偏离土体方向的位移与对作用于挡土墙上的土压力的影响,通过弹塑性有限元分析程序,计算满足土体极限平衡条件时,即作用于挡土墙上的土压力随挡土墙偏离土体方向位移,由静止土压力减小到主动土压力时,所需挡土墙位移的大小,分布规律及影响因素。  相似文献   

17.
 对于挡土墙距既有地下室很近,墙后填土宽度有限的情形,采用经典的库仑、朗肯土压力理论计算挡墙主动土压力是不严格的。通过有限元数值分析发现,当挡墙平动、填土达到主动极限状态时,无黏性土滑动土楔与邻近地下室外墙并未脱开,地下室外墙上全深度承受侧压力;随着填土宽高比n的不同,挡墙与地下室外墙间土体内将形成一道或多道滑裂面,且最靠近地表的滑裂面与挡墙或地下室外墙交点以上的土压力近似为库仑主动土压力。由此建立新的土压力计算模型,给出了挡墙主动土压力系数 和第一道滑裂面倾角 的求解方法,采用水平薄层单元法,得到了挡土墙主动土压力的分布以及合力作用点相对高度 的理论公式,并通过典型算例,与经典土压力理论、前人理论方法及有限元数值解进行对比。研究发现,挡土墙土压力为非线性的鼓形分布,当土体内摩擦角 和墙土摩擦角 取定值且 0°时, 随着n的增大而增大,而 和 随着n的增大而减小,当 时, 和 值与库仑解一致;当 0°时,不论n取何值, 和 值恒等于朗肯理论解,且 。  相似文献   

18.
挡土墙后的土侧压力必须按照挡土墙在土压力作用下的可能位移情况来区别对待。当挡土墙在土压力作用下有位移时,随着位移的增大,墙后土压力将逐渐减少,当位移达到一定数值时,土体内出现滑裂面,墙后填土达到主动极限平衡状态,此时作用在挡土墙上的土压力为主动土压力。  相似文献   

19.
采用离散元方法,建立多个不同宽度的离散元模型,得到了不同宽度土体从静止到主动状态过程中作用在挡土墙上的土压力发展过程以及极限状态下主动土压力的分布,并将数值结果与考虑土拱效应的理论公式计算结果进行对比分析。研究表明:当土体宽度较小时,墙后有限宽度土体中土拱效应的叠加效应会改变土压力的发展过程以及极限状态下的土压力分布。土体宽度较大时,土拱效应对土压力影响较小,土压力几乎呈直线分布,随着宽度的减小,土压力逐渐减小,土压力呈非线性分布。采用考虑土拱效应的计算公式可以较好地预测不同宽度下的土压力合力和分布。  相似文献   

20.
用土工袋构筑而成的挡土墙具有一定的柔性, 在墙后土压力作用下,墙体能够发生一定的变形, 墙后土压力分布及大小与刚性挡土墙大不相同。设计并进行了土工袋柔性挡土墙模型试验,通过试验观测了墙体的位移模式和墙后填土的破坏模式,研究了土压力沿墙体高度方向及墙体水平方向的分布;运用水平微分单元法推导了主动平衡状态下土工袋柔性挡土墙土压力的计算公式,土压力理论计算值与模型试验实测值基本吻合;进行了模型试验用土工袋层间摩擦试验,建立了土压力与土工袋层间摩擦力的平衡关系式,分析了土压力沿土工袋墙体水平方向的传递规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号