共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
介绍了喷墨打印、墨水直写打印、熔融沉积成型、立体光刻和数字光处理等多种增材制造技术(即3D打印技术)在含能材料中的应用,指出将该技术应用于含能材料的制造,可以轻易制得具有复杂设计结构的含能材料。但这些技术目前多数仍处于实验室制备阶段,未来的发展方向主要是进行3D打印技术的实际应用。 相似文献
3.
4.
5.
6.
7.
8.
9.
3D打印作为一种新兴的技术实现了材料的快速制造,同时可以对材料的结构更精确快速的设计,这无疑是推动众多领域发展的助力.3D打印与高分子材料的结合为制造技术开辟了新的途径.本文对不同的3D打印高分子材料ABS、PLA、PC等进行了论述,同时对于不同材料所对应的不同的3D打印技术原理进行了简要说明.对于不同3D打印技术的优... 相似文献
10.
高分子材料3D打印是增材制造的重要部分,其3D打印方式较多,发展前景广阔。本文以高分子材料在3D打印领域应用为主,讲述了常用的三种高分子材料3D打印方式原理和实际应用案例,介绍了其他四种高分子材料3D打印方式原理及技术要点,了解了我国聚合物3D打印机向超大型高温型发展的动态以及3D打印丝材转向使用粒料节约材料成本,兼容多种高性能3D打印材料,让聚合物3D打印更好地为国民经济发展增添新动能。 相似文献
11.
3D打印是一种快速成型技术,该技术在催化和吸附材料制备领域的应用目前已受到广泛重视。3D打印技术一方面能够拓展整体式催化/吸附材料的涵盖范围,实现材料的宏观结构优化和活性组分控制,同时有利于强化催化和吸附过程中的传质/传热过程,而且操作灵活,可靠性强,因此适于工业生产和实验室研究。本文介绍了催化/吸附材料制备过程中常见的几种3D打印技术,同时从打印策略和打印材料方面入手,综述了目前3D打印技术在催化和吸附领域的各项应用,并由此指出,目前3D打印技术可以将聚合物、碳材料、金属及金属氧化物、分子筛等材料纳入到整体式催化体系中,通过对材料结构和分布的控制对其催化和吸附性能进行影响,因此3D打印在催化和吸附材料制备领域的应用有着广阔的前景。同时指出材料微观结构控制、打印耗材及流程的标准化,以及以计算为依托的催化/吸附材料的整体式结构和活性位点分布控制是今后的研究重点。 相似文献
12.
13.
郭智臣 《化学推进剂与高分子材料》2010,(6):25-25
<正>荷兰先进材料集团帝斯曼公司推动可再生化工产品生产,把生物技术作为可持续化学路线的重要潜力。帝斯曼公司将投资于商业规模的生物琥珀酸装置,该装置可能建在美国、巴西或中国,这些地区拥有先进 相似文献
14.
钱伯章 《合成材料老化与应用》2008,37(2):57-58
帝斯曼公司与法国淀粉生产商Roquette公司于2008年1月21日宣布,合作开发以可再生的琥珀酸(丁二酸)为原料发酵生产生物基功能材料,包括聚合物。 相似文献
15.
16.
17.
18.
19.