首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We discuss the use of liquid-crystal phase modulators (LCPM's) both as a repeatable disturbance test source and as an adaptive optics corrector. LCPM's have the potential to induce controlled, repeatable, dynamic aberrations into optical systems at low cost, low complexity, and high flexibility. Because they are programmable and can be operated as transmissive elements, they can easily be inserted into the optical path of an adaptive optics system and used to generate a disturbance test source. When used as wave-front correctors they act as a piston-only segmented mirror and have a number of advantages. These include low operating power requirements, relatively low cost, and compact size. Laboratory experiments with a Meadowlark LCPM are presented. We first describe use of the LCPM as a repeatable disturbance generator for testing adaptive optics systems. We then describe a closed-loop adaptive optics system using the LCPM as the wave-front corrector. The adaptive optics system includes a Shack-Hartmann wave-front sensor operated with a zonal control algorithm.  相似文献   

2.
A wave-front sensor based on pseudo-phase-conjugate interferometry is presented. We show that a pseudo-phase-conjugate interferometer is suitable for the measurement of phase distribution on a propagating wave. This new method may be employed for optical workshop applications and wave-front sensing for adaptive optics. The theoretical sensitivity of the interferometer is twice that of the Hartmann-Shack wave-front sensor. Preliminary laboratory experiments demonstrate excellent performance and consistency with computer simulations.  相似文献   

3.
Optimization of a predictive controller for closed-loop adaptive optics   总被引:1,自引:0,他引:1  
Dessenne C  Madec PY  Rousset G 《Applied optics》1998,37(21):4623-4633
For closed-loop adaptive optics systems limited by time delay and measurement noise, we demonstrate that the ideal rejection transfer function is proportional to the frequency signal-to-noise ratio of the wave-front input. We describe a new modal linear predictive controller that approaches this ideal transfer function. Its parameters are optimized by minimization of the residual wave-front error with a modified recursive least-squares algorithm. The optimization can be performed with closed-loop data in the case of evolving turbulent conditions. We present numerical simulations to show the significant improvements brought by the predictor.  相似文献   

4.
Acton DS 《Applied optics》1995,34(34):7965-7968
Adaptive optical systems are designed to compensate for wave-front errors caused by atmospheric turbulence. In addition, they may also correct for wave-front errors associated with fixed optical aberrations in the host telescope. In general, however, adaptive optical systems cannot sense wave-front errors caused by imperfections in their own internal optical components. Consequently, these fixed internal errors will remain uncorrected. The problem of fixed internal aberrations has been noted in a segmented adaptive optics system designed for solar astronomy. This problem has been eliminated by measurement of the fixed errors, off line, through the use of a simple adaptation of a Hartmann test. Results from a recent experiment demonstrating the correction of the errors are presented.  相似文献   

5.
A wave-front control paradigm based on gradient-flow optimization is analyzed. In adaptive systems with gradient-flow dynamics, the output of the wave-front sensor is used to directly control high-resolution wavefront correctors without the need for wave-front phase reconstruction (direct-control systems). Here, adaptive direct-control systems with advanced phase-contrast wave-front sensors are analyzed theoretically, through numerical simulations, and experimentally. Adaptive system performance is studied for atmospheric-turbulence-induced phase distortions in the presence of input field intensity scintillations. The results demonstrate the effectiveness of this approach for high-resolution adaptive optics.  相似文献   

6.
We present a new wave-front sensing technique for adaptive optics based on use of several wave-front sensors dedicated to the sensing of a different range of spatial frequencies. We call it a hierarchical wave-front sensor. We present the concept of a hierarchical wave-front sensor and apply it to the Shack-Hartmann sensor. We show the gain that is expected with two Shack-Hartmann sensors. We obtain a gain that increases with the size of the largest sensor, and we detail the application of hierarchical wave-front sensing to extreme adaptive optics and extremely large telescopes.  相似文献   

7.
We analyze the anisoplanatic adaptive receiver system field of view (FOV) and the possibility of controlling the system FOV by using an adaptive optics system with multiple wave-front sensors that sense wave-front phase aberrations of reference waves with different arrival angles. The conventional decoupled stochastic parallel gradient descent (D-SPGD) technique is generalized to include output signals from multiple wave-front sensors. The multiple-reference D-SPGD control algorithm introduced here is applied to obtain an anisotropic FOV in adaptive receiver systems by using two and three reference waves.  相似文献   

8.
We reanalyze the effects of atmosphere-induced image motions on the measurement of solar polarized light using a formalism developed by Lites. Our reanalysis is prompted by the advent of adaptive optics (AO) systems that reduce image motion and higher-order aberrations, by the availability of liquid crystals as modulation devices, and by the need to understand how best to design polarimeters for future telescopes such as the Advanced Technology Solar Telescope. In this first attempt to understand the major issues, we analyze the influence of residual image motion (tip-tilt) corrections of operational AO systems on the cross talk between Stokes parameters and present results for several polarization analysis schemes. Higher-order wave-front corrections are left for future research. We also restrict our discussion to the solar photosphere, which limits several important parameters of interest, using some recent magnetoconvection simulations.  相似文献   

9.
A new adaptive wave-front control technique and system architectures that offer fast adaptation convergence even for high-resolution adaptive optics is described. This technique is referred to as decoupled stochastic parallel gradient descent (D-SPGD). D-SPGD is based on stochastic parallel gradient descent optimization of performance metrics that depend on wave-front sensor data. The fast convergence rate is achieved through partial decoupling of the adaptive system's control channels by incorporating spatially distributed information from a wave-front sensor into the model-free optimization technique. D-SPGD wave-front phase control can be applied to a general class of adaptive optical systems. The efficiency of this approach is analyzed numerically by considering compensation of atmospheric-turbulence-induced phase distortions with use of both low-resolution (127 control channels) and high-resolution (256 x 256 control channels) adaptive systems. Results demonstrate that phase distortion compensation can be achieved during only 10-20 iterations. The efficiency of adaptive wave-front correction with D-SPGD is practically independent of system resolution.  相似文献   

10.
Costa JB 《Applied optics》2005,44(1):60-66
The pyramid wave-front sensor in its original form works with a mechanical modulation that adapts the linear range of the sensor to seeing and sensing conditions. For adaptive optics systems working in an astronomical context, the way in which the aberrations produced by the atmospheric turbulence, which are not seen by the sensor owing to its limited temporal bandwidth, act as modulators is shown. These aberrations have the same effect of increasing the linear range and localizing the measurement as does mechanical modulation. The effect of residual wave-front aberrations is estimated for some example conditions of telescope diameter, system bandwidth, wind velocity, and Fried parameter.  相似文献   

11.
Methods for the characterization of deformable membrane mirrors   总被引:1,自引:0,他引:1  
Booth M  Wilson T  Sun HB  Ota T  Kawata S 《Applied optics》2005,44(24):5131-5139
We demonstrate two methods for the characterization of deformable membrane mirrors and the training of adaptive optics systems that employ these mirrors. Neither method employs a wave-front sensor. In one case, aberrations produced by a wave-front generator are corrected by the deformable mirror by use of a rapidly converging iterative algorithm based on orthogonal deformation modes of the mirror. In the other case, a simple interferometer is used with fringe analysis and phase-unwrapping algorithms. We discuss how the choice of singular values can be used to control the pseudoinversion of the control matrix.  相似文献   

12.
The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A 73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.  相似文献   

13.
Zhu L  Sun PC  Bartsch DU  Freeman WR  Fainman Y 《Applied optics》1999,38(28):6019-6026
We investigate the characteristics of a 37-channel micromachined membrane deformable mirror for wave-front generation. We demonstrate wave-front generation of the first 20 Zernike polynomial modes, using an iterative algorithm to adjust driving voltages. The results show that lower-order-mode wave fronts can be generated with good accuracy and large dynamic range, whereas the generation of higher-order modes is limited by the number of the actuator channels and the working range of the deformable mirror. The speed of wave-front generation can be as fast as several hundred hertz. Our results indicate that, in addition to generation of wave fronts with known aberrations, the characteristics of the micromachined membrane deformable mirror device can be useful in adaptive optics systems for compensating the first five orders of aberration.  相似文献   

14.
We present a detailed investigation of different methods of the characterization of atmospheric turbulence with the adaptive optics systems of the W. M. Keck Observatory. The main problems of such a characterization are the separation of instrumental and atmospheric effects and the accurate calibration of the devices involved. Therefore we mostly describe the practical issues of the analysis. We show that two methods, the analysis of differential image motion structure functions and the Zernike decomposition of the wave-front phase, produce values of the atmospheric coherence length r0 that are in excellent agreement with results from long-exposure images. The main error source is the calibration of the wave-front sensor. Values determined for the outer scale L0 are consistent between the methods and with typical L0 values found at other sites, that is, of the order of tens of meters.  相似文献   

15.
Calibration experiments with a bimorph mirror are presented. Phase-diversity wave-front sensing is used for measuring the control matrix, nulling wave-front errors in the optical setup, including the mirror, and measuring Strehl ratios and residual higher-order aberrations. The Strehl ratio of the calibrated system is measured to be 0.975, corresponding to 1/40 wave rms in the residual wave front. The conclusion is that a phase-diversity wave-front sensor is easier to install and use than interferometers and can replace them in optical setups for testing adaptive optics systems.  相似文献   

16.
Ren H  Dekany R  Britton M 《Applied optics》2005,44(13):2626-2637
We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone with a direct residual error updating procedure or used with the preconditioned conjugate-gradient method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering, using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the performance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, multigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics system.  相似文献   

17.
We present sample Monte Carlo simulation results to illustrate the trends in multiconjugate adaptive optics (MCAO) performance as the telescope aperture diameter increases from 8 to 32 m with all other first-order system parameters held constant. The MCAO system considered includes three deformable mirrors, a 1-arc min square field of view, and five wave-front-sensing references consisting of either natural guide stars or laser guide stars at a range of either 30 or 90 km. The rms residual wave-front error decreases slowly with increasing aperture diameter with natural guide stars, whereas performance degrades significantly with increasing aperture diameter for laser guide stars at 30 km if the number of guide stars is held fixed. Performance with laser guide stars at 90 km is a weak function of telescope aperture diameter in the range from 8 to 32 m, with rms wave-front errors no more than 20% greater than the corresponding natural guide-star case for the same level of wave-front sensor's measurement noise.  相似文献   

18.
基于控制流的实时波前复原脉动阵列   总被引:1,自引:0,他引:1  
波前复原算法是自适应光学波前信号处理的中枢部分.针对波前复原算法计算量大、算法简单规则的特点,本文研究了波前复原部分的并行算法以及复原矩阵的子孔径行系数簇变换和循环矩阵分解法,同时建立了基于控制流的波前复原脉动阵列.针对一套128单元自适应光学系统,进行了基于控制流波前复原脉动阵列和传统复原脉动阵列的实验研究,实验结果表明基于控制流的波前复原脉动阵列在实时性上略逊于传统脉动复原阵列,资源占用仅为传统脉动复原阵列的几十到几百分之一.  相似文献   

19.
Viard E  Le LM  Hubin N 《Applied optics》2002,41(1):11-20
We study the performance of an adaptive optics (AO) system with four laser guide stars (LGSs) and a natural guide star (NGS). The residual cone effect with four LGSs is obtained by a numerical simulation. This method allows the adaptive optics system to be extended toward the visible part of the spectrum without tomographic reconstruction of three-dimensional atmospheric perturbations, resolving the cone effect in the visible. Diffraction-limited images are obtained with 17-arc ms precision in median atmospheric conditions at wavelengths longer than 600 nm. The gain achievable with such a system operated on an existing AO system is studied. For comparison, performance in terms of achievable Strehl ratio is also computed for a reasonable system composed of a 40 x 40 Shack-Hartmann wave-front sensor optimized for the I band. Typical errors of a NGS wave front are computed by use of analytical formulas. With the NGS errors and the cone effect, the Strehl ratio can reach 0.45 at 1.25 microm under good-seeing conditions with the Nasmyth Adaptive Optics System (NAOS; a 14 x 14 subpupil wave-front sensor) at the Very Large Telescope and 0.8 with a 40 x 40 Shack-Hartmann wave-front sensor.  相似文献   

20.
Curvature sensors are used in adaptive optics to measure the wave-front aberrations. In practice, their performance is limited by their nonlinear behavior, which we characterize by solving simultaneously the irradiance transport equation and the accompanying wave-front transport equation. We show how the presence of nonlinear geometric terms limits the accuracy of the sensor and how diffraction effects limit the spatial resolution. The effect of photon noise on the sensor is also quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号