首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of robots to autonomously perform tasks is increasing. More autonomy in robots means that the human managing the robot may have available free time. It is desirable to use this free time productively, and a current trend is to use this available free time to manage multiple robots. We present the notion of neglect tolerance as a means for determining how robot autonomy and interface design determine how free time can be used to support multitasking, in general, and multirobot teams, in particular. We use neglect tolerance to 1) identify the maximum number of robots that can be managed; 2) identify feasible configurations of multirobot teams; and 3) predict performance of multirobot teams under certain independence assumptions. We present a measurement methodology, based on a secondary task paradigm, for obtaining neglect tolerance values that allow a human to balance workload with robot performance.  相似文献   

2.
In this paper, we present a novel approach for representing formation structures in terms of queues and formation vertices, rather than with nodes, as well as the introduction of the new concept of artificial potential trenches, for effectively controlling the formation of a group of robots. The scheme improves the scalability and flexibility of robot formations when the team size changes, and at the same time, allows formations to adapt to obstacles. Furthermore, for multirobot teams to operate successfully in real and unstructured environments, the instant goal method is used to effectively solve the local minima problem.  相似文献   

3.
Applying a path planner based on RRT to cooperative multirobot box-pushing   总被引:1,自引:0,他引:1  
Considering robot systems in the real world, a multirobot system where multiple robots work simultaneously without colliding with each other is more practical than a single-robot system where only one robot works. Therefore, solving the path-planning problem in a multirobot system is very important. In this study, we developed a path-planner based on the rapidly exploring random tree (RRT), which is a data structure and algorithm designed for efficiently searching for multirobot box-pushing, and made experiments in real environments. A path planner must construct a plan which avoids the robot colliding with obstacles or with other robots. Moreover, in some cases, a robot must collaborate with other robots to transport the box without colliding with any obstacles. Our proposed path planner constructs a box-transportation plan and the path plans of each robot bearing the above considerations in mind. Experimental results showed that our proposed planner can construct a multirobot box-pushing plan without colliding with obstacles, and that the robots can execute tasks according to the plan in real environments. We also checked that multiple robots can perform problem tasks when only one robot could not transport the box to the goal. This work was presented in part at the 13th International Symposium on Articifial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

4.

Heterogeneous multirobot systems have shown significant potential in many applications. Cooperative coevolutionary algorithms (CCEAs) represent a promising approach to synthesise controllers for such systems, as they can evolve multiple co-adapted components. Although CCEAs allow for an arbitrary level of team heterogeneity, in previous works heterogeneity is typically only addressed at the behavioural level. In this paper, we study the use of CCEAs to evolve control for a heterogeneous multirobot system where the robots have disparate morphologies and capabilities. Our experiments rely on a simulated task where a simple ground robot must cooperate with a complex aerial robot to find and collect items. We first show that CCEAs can evolve successful controllers for physically heterogeneous teams, but find that differences in the complexity of the skills the robots need to learn can impair CCEAs’ effectiveness. We then study how different populations can use different evolutionary algorithms and parameters tuned to the agents’ complexity. Finally, we demonstrate how CCEAs’ effectiveness can be improved using incremental evolution or novelty-driven coevolution. Our study shows that, despite its limitations, coevolution is a viable approach for synthesising control for morphologically heterogeneous systems.

  相似文献   

5.
In formation-maintenance (formation control) tasks, robots maintain their relative position with respect to their peers, according to a desired geometric shape. Previous work has examined formation-maintenance algorithms, based on formation control graphs, that ensure the theoretical stability of the formation. However, an exponential number of stable controllers exists. Thus a key question is how to select (construct) a formation controller that optimizes desired properties, such as sensor usage. We present a novel representation of the sensing capabilities of robots in formations, using a monitoring multigraph. We first show that graph-theoretic techniques can then be used to efficiently compute optimal sensing policies that maintain a given formation, while minimizing sensing costs. In particular, separation-bearing (distance-angle) control targets are automatically constructed for each individual robot in the formation, taking into account its specific sensor morphology. Then, we present a protocol allowing control graphs to be switched on line, to allow robots to adjust to sensory failures. We report on results from comprehensive experiments with physical and simulated robots. The results show that the use of the dynamic protocol allows formations of real robots to move significantly faster and with greater precision, while reducing the number of formation failures, due to sensor limitations. We also evaluate the sensitivity of our approach to communication reliability, and discuss opportunities and challenges raised by our approach.  相似文献   

6.
This paper addresses the challenging problem of finding collision-free trajectories for many robots moving toward individual goals within a common environment. Most popular algorithms for multirobot planning manage the complexity of the problem by planning trajectories for robots individually; such decoupled methods are not guaranteed to find a solution if one exists. In contrast, this paper describes a multiphase approach to the planning problem that uses a graph and spanning tree representation to create and maintain obstacle-free paths through the environment for each robot to reach its goal. The resulting algorithm guarantees a solution for a well-defined number of robots in a common environment. The computational cost is shown to be scalable with complexity linear in the number of the robots, and demonstrated by solving the planning problem for 100 robots, simulated in an underground mine environment, in less than 1.5 s with a 1.5 GHz processor. The practicality of the algorithm is demonstrated in a real-world application requiring coordinated motion planning of multiple physical robots.  相似文献   

7.
Experimental validation is particularly important in multi-robot systems research. The differences between models and real-world conditions that may not be apparent in single robot experiments are amplified because of the large number of robots, interactions between robots, and the effects of asynchronous and distributed control, sensing, and actuation. Over the last two years, we have developed an experimental testbed to support research in multirobot systems with the goal of making it easy for users to model, design, benchmark, and validate algorithms. In this article, we describe our approach to the design of a large-scale multirobot system for the experimental verification and validation of a variety of distributed robotic applications in an indoor environment.  相似文献   

8.
Robots that work in a proper formation show several advantages compared to a single complex robot, such as a reduced cost, robustness, efficiency and improved performance. Existing researches focused on the method of keeping the formation shape during the motion, but usually neglect collision constraints or assume a simplified model of obstacles. This paper investigates the path planning of forming a target robot formation in a clutter environment containing unknown obstacles. The contribution lies in proposing an efficient path planner for the multiple mobile robots to achieve their goals through the clutter environment and developing a dynamic priority strategy for cooperation of robots in forming the target formation. A multirobot system is set up to verify the proposed method of robot path planning. Simulations and experiments results demonstrate that the proposed method can successfully address the collision avoidance problem as well as the formation forming problem.  相似文献   

9.
In this paper, we consider dynamic multirobot tasks that can be done by any of the robots, but only with the assistance of any other robot. We propose a novel approach based on the concept of ‘assistance networks’ with two complementary aspects, namely assistant finding and network topology update. Each robot, encountering a new task, seeks an assisting robot among its immediate neighbors in the assistance network in a decentralized manner. The network topology is defined based on pairwise stability via payoff functions that consider general task-related guidelines. As such, the number of potential assisting robots can be ensured a priori depending on tasks’ requirements. As robots move around, the topology is updated via pairwise games. If the games are conducted by a network coordinator, each game is shown to result in a pairwise stable network. A series of simulation and experimental results in a variety of different scenarios demonstrate that the robots are able to get assistance or give assistance flexibly.  相似文献   

10.
In this paper, we investigate the operation of the queue-formation structure (or Q-structure) in multirobot teams with limited communication. Information flow can be divided into two time scales: (1) the fast-time scale where the robots' reactive actions are determined based only on local communication and (2) the slow-time scale, where information required is less demanding, can be collected over a longer time, and intermittent information loss can be afforded. Therefore, there is no need for global information at all times, reducing the overall communication load. In addition, a dynamic target determination algorithm, based on the Q-structure, is used to produce a series of targets that incrementally guide each robot into formation. It provides greater control over the distance between robots on the same queue, instead of relying on inter robot repulsive distance, and, allows better formation scaling. An analysis of the convergence of the system of robots and realistic simulation studies are provided.  相似文献   

11.
12.
In this paper we show how non-linear attractor dynamics can be used as a framework to control teams of autonomous mobile robots that should navigate according to a predefined geometric formation. The environment does not need to be known a priori and may change over time. Implicit to the control architecture are some important features such as establishing and moving the formation, split and join of formations (when necessary to avoid obstacles). Formations are defined by a formation matrix. By manipulating this formation matrix it is also possible to switch formations at run time. Examples of simulation results and implementations with real robots (teams of Khepera robots and medium size mobile robots), demonstrate formation switch, static and dynamic obstacle avoidance and split and join formations without the need for any explicit coordination scheme. Robustness against environmental perturbations is intrinsically achieved because the behaviour of each robot is generated as a time series of asymptotically stable states, which contribute to the asymptotic stability of the overall control system.  相似文献   

13.
Exploration of high risk terrain areas such as cliff faces and site construction operations by autonomous robotic systems on Mars requires a control architecture that is able to autonomously adapt to uncertainties in knowledge of the environment. We report on the development of a software/hardware framework for cooperating multiple robots performing such tightly coordinated tasks. This work builds on our earlier research into autonomous planetary rovers and robot arms. Here, we seek to closely coordinate the mobility and manipulation of multiple robots to perform examples of a cliff traverse for science data acquisition, and site construction operations including grasping, hoisting, and transport of extended objects such as large array sensors over natural, unpredictable terrain. In support of this work we have developed an enabling distributed control architecture called control architecture for multirobot planetary outposts (CAMPOUT) wherein integrated multirobot mobility and control mechanisms are derived as group compositions and coordination of more basic behaviors under a task-level multiagent planner. CAMPOUT includes the necessary group behaviors and communication mechanisms for coordinated/cooperative control of heterogeneous robotic platforms. In this paper, we describe CAMPOUT, and its application to ongoing physical experiments with multirobot systems at the Jet Propulsion Laboratory in Pasadena, CA, for exploration of cliff faces and deployment of extended payloads.  相似文献   

14.
Safety, security, and rescue robotics can be extremely useful in emergency scenarios such as mining accidents or tunnel collapses where robot teams can be used to carry out cooperative exploration, intervention, or logistic missions. Deploying a multirobot team in such confined environments poses multiple challenges that involve task planning, motion planning, localization and mapping, safe navigation, coordination, and communications among all the robots. To complete their mission, robots have to be able to move in the environment with full autonomy while at the same time maintaining communication among themselves and with their human operators to accomplish team collaboration. Guaranteeing connectivity enables robots to explicitly exchange information needed in the execution of collaborative tasks and allows operators to monitor and teleoperate the robots and receive information about the environment. In this work, we present a system that integrates several research aspects to achieve a real exploration exercise in a tunnel using a robot team. These aspects are as follows: deployment planning, semantic feature recognition, multirobot navigation, localization, map building, and real‐time communications. Two experimental scenarios have been used for the assessment of the system. The first is the Spanish Santa Marta mine, a large mazelike environment selected for its complexity for all the tasks involved. The second is the Spanish‐French Somport tunnel, an old railway between Spain and France through the Central Pyrenees, used to carry out the real‐world experiments. The latter is a simpler scenario, but it serves to highlight the real communication issues.  相似文献   

15.
Coordinated multirobot exploration involves autonomous discovering and mapping of the features of initially unknown environments by using multiple robots. Autonomously exploring mobile robots are usually driven, both in selecting locations to visit and in assigning them to robots, by knowledge of the already explored portions of the environment, often represented in a metric map. In the literature, some works addressed the use of semantic knowledge in exploration, which, embedded in a semantic map, associates spatial concepts (like ‘rooms’ and ‘corridors’) with metric entities, showing its effectiveness in improving the total area explored by robots. In this paper, we build on these results and propose a system that exploits semantic information to push robots to explore relevant areas of initially unknown environments, according to a priori information provided by human users. Discovery of relevant areas is significant in some search and rescue settings, in which human rescuers can instruct robots to search for victims in specific areas, for example in cubicles if a disaster happened in an office building during working hours. We propose to speed up the exploration of specific areas by using semantic information both to select locations to visit and to determine the number of robots to allocate to those locations. In this way, for example, more robots could be assigned to a candidate location in a corridor, so the attached rooms can be explored faster. We tested our semantic-based multirobot exploration system within a reliable robot simulator and we evaluated its performance in realistic search and rescue indoor settings with respect to state-of-the-art approaches.  相似文献   

16.
针对通讯受限条件下大规模移动机器人编队任务,本文提出了基于行为的分布式多机器人线形编队控制和避障算法.机器人个体无需获得群体中所有机器人的信息,而是根据传感器获取的环境信息和局部范围内的机器人信息对其自身的调整方向进行预测,并最终很好地完成了设定的编队及避障任务.由于本文方法需求的通讯量不大,并且采用分布式控制,因此该...  相似文献   

17.
Most existing multirobot systems for pattern formation rely on a predefined pattern, which is impractical for dynamic environments where the pattern to be formed should be able to change as the environment changes. In addition, adaptation to environmental changes should be realized based only on local perception of the robots. In this paper, we propose a hierarchical gene regulatory network (H-GRN) for adaptive multirobot pattern generation and formation in changing environments. The proposed model is a two-layer gene regulatory network (GRN), where the first layer is responsible for adaptive pattern generation for the given environment, while the second layer is a decentralized control mechanism that drives the robots onto the pattern generated by the first layer. An evolutionary algorithm is adopted to evolve the parameters of the GRN subnetwork in layer 1 for optimizing the generated pattern. The parameters of the GRN in layer 2 are also optimized to improve the convergence performance. Simulation results demonstrate that the H-GRN is effective in forming the desired pattern in a changing environment. Robustness of the H-GRN to robot failure is also examined. A proof-of-concept experiment using e-puck robots confirms the feasibility and effectiveness of the proposed model.  相似文献   

18.
A Neural Network Approach to Dynamic Task Assignment of Multirobots   总被引:1,自引:0,他引:1  
In this paper, a neural network approach to task assignment, based on a self-organizing map (SOM), is proposed for a multirobot system in dynamic environments subject to uncertainties. It is capable of dynamically controlling a group of mobile robots to achieve multiple tasks at different locations, so that the desired number of robots will arrive at every target location from arbitrary initial locations. In the proposed approach, the robot motion planning is integrated with the task assignment, thus the robots start to move once the overall task is given. The robot navigation can be dynamically adjusted to guarantee that each target location has the desired number of robots, even under uncertainties such as when some robots break down. The proposed approach is capable of dealing with changing environments. The effectiveness and efficiency of the proposed approach are demonstrated by simulation studies.  相似文献   

19.
In the field of formation control, researchers generally control multiple robots in only one team, and little research focuses on multi-team formation control. In this paper, we propose an architecture, called Virtual Operator MultiAgent System (VOMAS), to perform formation control for multiple teams of mobile robots with the capabilities and advantages of scalability and autonomy. VOMAS is a hybrid architecture with two main agents. The virtual operator agent handles high level missions and team control, and the robot agent deals with low level formation control. The virtual operator uses four basic services including join, remove, split, and merge requests to perform multi-team control. A new robot can be easily added to a team by cloning a new virtual operator to control it. The robot agent uses a simple formation representation method to show formation to a large number of robots, and it uses the concept of potential field and behavior-based control to perform kinematic control to keep formation both in holonomic and nonholonomic mobile robots. In addition, we also test the stability, robustness, and uncertainty in the simulation. This research was supported by the National Science Council under grant NSC 91-2213-E-194-003.  相似文献   

20.
Cluster space control is a method of multirobot formation keeping that considers a group of robots to be a single entity, defining state variables to represent characteristics of the group, such as position, orientation, and shape. This technique, however, suffers from singularities when a minimal state representation is used. This paper presents three alternative implementations of this control approach that eliminate singularities through changes in the control architecture or through redundant formation definitions. These proposed solutions rely on quaternions, dual quaternions, and control implementations that produce singularity-free trajectories while maintaining a cluster level abstraction that allows for simple specification and monitoring. A key component of this work is a novel concept of representing formation shape parameters with dual quaternions. Simulation results show the feasibility of the proposed solutions and illustrate their differences and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号