共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilin, a ubiquitous 12 to 15-kDa protein, serves many functions, including sequestering monomeric actin, accelerating nucleotide exchange on actin monomers, decreasing the critical concentration of the barbed end of actin filaments, and promoting actin polymerization when barbed ends are free. Most previous studies have focused on profilin itself rather than its complex with actin. A high-affinity profilin-actin complex (here called profilactin) can be isolated from a poly-(L)-proline (PLP) column by sequential elution with 3 M and 7 M urea. Profilactin inhibited the elongation rate of pyrenyl-G-actin from filament seeds in a concentration- and time-dependent manner. Much greater inhibition of elongation was observed with spectrin-F-actin than gelsolin-F-actin seeds, suggesting that the major effect of profilactin was due to capping the barbed ends of actin filaments. Its dissociation constant for binding to filament ends was 0.3 microM; the on- and off-rate constants were estimated to be 1.7 x 10(3) M-1 s-1 and 4.5 x 10(-4) s-1, respectively. Purified profilin (obtained by repetitive applications to a PLP column and assessed by silver-stained polyacylamide gels) did not slow the elongation rate of pyrenyl-G-actin from filament seeds. Capping protein could not be detected by Western blotting in the profilactin preparation, but low concentrations of gelsolin did contaminate our preparation. However, prolonged incubation with either calcium or EGTA did not affect capping activity, implying that contaminating gelsolin-actin complexes were not primarily responsible for the observed capping activity. Reapplication of the profilactin preparation to PLP-coupled Sepharose removed both profilin and actin and concurrently eliminated its capping activity. Profilactin that was reapplied to uncoupled Sepharose retained its capping activity. Phosphatidylinositol-4,5-bisphosphate (PIP2) was the most potent phosphoinositol in reducing the capping activity of profilactin. Dissociation of the tight profilactin complex may serve as a unique mechanism by which profilin helps regulate actin filament growth. 相似文献
2.
RO Laine KL Phaneuf CC Cunningham D Kwiatkowski T Azuma FS Southwick 《Canadian Metallurgical Quarterly》1998,66(8):3775-3782
The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed-end-capping activity of both gelsolin and CapG. The ability of Listeria to uncap actin filaments combined with the severing activity of gelsolin can accelerate actin-based motility. However, gelsolin is not absolutely required for the actin-based intracellular movement of Listeria because its function can be replaced by other actin regulatory proteins in gelsolin-null cells, demonstrating the functional redundancy of the actin system. 相似文献
3.
K Kimura Y Fukata Y Matsuoka V Bennett Y Matsuura K Okawa A Iwamatsu K Kaibuchi 《Canadian Metallurgical Quarterly》1998,273(10):5542-5548
The small GTPase Rho is believed to regulate the actin cytoskeleton and cell adhesion through its specific targets. We previously identified the Rho targets: protein kinase N, Rho-associated kinase (Rho-kinase), and the myosin-binding subunit (MBS) of myosin phosphatase. Here we purified MBS-interacting proteins, identified them as adducin, and found that MBS specifically interacted with adducin in vitro and in vivo. Adducin is a membrane-skeletal protein that promotes the binding of spectrin to actin filaments and is concentrated at the cell-cell contact sites in epithelial cells. We also found that Rho-kinase phosphorylated alpha-adducin in vitro and in vivo and that the phosphorylation of alpha-adducin by Rho-kinase enhanced the interaction of alpha-adducin with actin filaments in vitro. Myosin phosphatase composed of the catalytic subunit and MBS showed phosphatase activity toward alpha-adducin, which was phosphorylated by Rho-kinase. This phosphatase activity was inhibited by the phosphorylation of MBS by Rho-kinase. These results suggest that Rho-kinase and myosin phosphatase regulate the phosphorylation state of adducin downstream of Rho and that the increased phosphorylation of adducin by Rho-kinase causes the interaction of adducin with actin filaments. 相似文献
4.
Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non-membrane-associated protein translation may be occurring in vivo. 相似文献
5.
Actin filaments could play a role in regulation of cell swelling by two distinct mechanisms. One is by a tensile mechanism involving the coordinated interaction of actin and actin-associated proteins with all plasma membrane domains. The actin-membrane linkage would restrain cell swelling in the event of the influx of water. In shark rectal gland cells, conditions that cause massive cell swelling (i.e., high K medium, exposure to mercurials) are associated with disruption of membrane-associated actin filaments. Under conditions that result in only moderate swelling (Na-pump inhibition, Li substitution) the actin filaments remain associated with the cell membrane. Thus, in this cell type, disruption of the actin-membrane organization is correlated with increased swelling. Another mechanism by which actin could limit cell swelling is via regulation of ion transport proteins that are activated by cell swelling. This could be accomplished by a vesicle transport and insertion mechanism that delivers ion transport units to the cell membrane or by interaction with transport proteins already present in the membrane. Cell-attached patch clamp studies of RCCT-28A cells exposed to hypotonic medium demonstrated the activation of Cl-channel activity coincident with an alteration in actin. Activation of the channel was mimicked by stretching the membrane. Exposure of inside-out patches to cytochalasins also increased Cl-channel activity. Treatment of isolated patches with phalloidin inhibited stretch-induced activation. Thus, regulation of a volume-sensitive Cl-channel appears to be directly related to the state of organization of actin filaments. 相似文献
6.
We studied mathematical models for the length distributions of actin filaments under the effects of polymerization/depolymerization, and fragmentation. In this paper, we emphasize the effects of these two processes acting alone. In this case, simple discrete and continuous models can be derived and solved explicitly (in several special cases), making the problem interesting from a modeling and pedagogical point of view. In a companion paper (Ermentrout and Edelstein-Keshet, 1998, Bull. Math. Biol. 60, 477-503) we investigate what happens when the processes act together, with particular attention to fragmentation by gelsolin, and with a greater level of biological detail. 相似文献
7.
Adducin is a protein associated with spectrin and actin in membrane skeletons of erythrocytes and possibly other cells. Adducin has activities in in vitro assays of association with the sides of actin filaments, capping the fast growing ends of actin filaments, and recruiting spectrin to actin filaments. This study presents evidence that adducin exhibits a preference for the fast growing ends of actin filaments for recruiting spectrin to actin and for direct association with actin. beta-Adducin-(335-726) promoted recruitment of spectrin to gelsolin-sensitive sites at fast growing ends of actin filaments with half-maximal activity at 15 nM and to gelsolin-insensitive sites with half-maximal activity at 75 nM. beta-Adducin-(335-726) also exhibited a preference for actin filament ends in direct binding assays; the half-maximal concentration for binding of adducin to gelsolin-sensitive sites at filament ends was 60 nM, and the Kd for binding to lateral sites was 1.5 microM. The concentration of beta-adducin-(335-726) of 60 nM required for half-maximal binding to filament ends is in the same range as the concentration of 150 nM required for half-maximal actin capping activity. All interactions of adducin with actin require the myristoylated alanine-rich protein kinase C substrate-related domain as well as a newly defined oligomerization site localized in the neck domain of adducin. Surprisingly, the head domain of adducin is not required for spectrin-actin interactions, although it could play a role in forming tetramers. The relative activities of adducin imply that an important role of adducin in cells is to form a complex with the fast growing ends of actin filaments that recruits spectrin and prevents addition or loss of actin subunits. 相似文献
8.
The calcium-binding protein S100B binds to several potential target proteins, but there is no detailed information showing the location of the binding site for any target protein on S100B. We have made backbone assignments of the calcium-bound form of S100B and used chemical-shift changes in spectra of 15N-labeled protein to locate the site that binds a peptide corresponding to residues 265-276 from CapZ alpha, the actin capping protein. The largest chemical-shift changes are observed for resonances arising from residues around the C terminus of the C-terminal helix of S100B and residues Val-8 to Asp-12 of the N-terminal helix. These residues are close to but not identical to residues that have been identified by mutational analysis to be important in other S100 protein-protein interactions. They make up a patch across the S100B dimer interface and include some residues that are quite buried in the structure of calcium-free S100B. We believe we may have identified a binding site that could be common to many S100 protein-protein interactions. 相似文献
9.
A reliable viability assay for Giardia is required for the development of disinfection process design criteria and pathogen monitoring by water treatment utilities. Surveys of single-staining nucleic acid dyes (stain dead parasites only), and double-staining vital dye kits from Molecular Probes (stain live and dead parasites) were conducted to assess the viability of untreated, heat-killed, and chemically inactivated Giardia muris cysts. Nucleic acid staining results were compared to those of in vitro excystation and animal infectivity. Nucleic acid stain, designated as SYTO-9, was considered the best among the single-staining dyes for its ability to stain dead cysts brightly and its relatively slow decay rate of visible light emission following DNA binding. SYTO-9 staining was correlated to animal infectivity. A Live/Dead BacLight was found to be the better of 2 double-staining viability kits tested. Logarithmic survival ratios based on SYTO-9 and Live/Dead BacLight were compared to excystation and infectivity results for G. muris cysts exposed to ozone or free chlorine. The results indicate that SYTO-9 and Live/Dead BacLight staining is stable following treatment of cysts with chemical disinfectants. 相似文献
10.
In a previous paper, we studied elementary models for polymerization, depolymerization, and fragmentation of actin filaments (Edelstein-Keshet and Ermentrout, 1988, Bull. Math. Biol. 60, 449-475). When these processes act together, more complicated dynamics occur. We concentrate on a particular case study, using the actin-fragmenting protein gelsolin. A set of biological parameter values (drawn from the experimental literature) is used in computer simulations of the kinetics of gelsolin-mediated actin filament fragmentation. 相似文献
11.
Cultured vascular endothelial cells undergo significant morphological changes when subjected to sustained fluid shear stress. The cells elongate and align in the direction of applied flow. Accompanying this shape change is a reorganization at the intracellular level. The cytoskeletal actin filaments reorient in the direction of the cells' long axis. How this external stimulus is transmitted to the endothelial cytoskeleton still remains unclear. In this article, we present a theoretical model accounting for the cytoskeletal reorganization under the influence of fluid shear stress. We develop a system of integro-partial-differential equations describing the dynamics of actin filaments, the actin-binding proteins, and the drift of transmembrane proteins due to the fluid shear forces applied on the plasma membrane. Numerical simulations of the equations show that under certain conditions, initially randomly oriented cytoskeletal actin filaments reorient in structures parallel to the externally applied fluid shear forces. Thus, the model suggests a mechanism by which shear forces acting on the cell membrane can be transmitted to the entire cytoskeleton via molecular interactions alone. 相似文献
12.
BL Goode JJ Wong AC Butty M Peter AL McCormack JR Yates DG Drubin G Barnes 《Canadian Metallurgical Quarterly》1999,144(1):83-98
Coronin is a highly conserved actin-associated protein that until now has had unknown biochemical activities. Using microtubule affinity chromatography, we coisolated actin and a homologue of coronin, Crn1p, from Saccharomyces cerevisiae cell extracts. Crn1p is an abundant component of the cortical actin cytoskeleton and binds to F-actin with high affinity (Kd 6 x 10(-9) M). Crn1p promotes the rapid barbed-end assembly of actin filaments and cross-links filaments into bundles and more complex networks, but does not stabilize them. Genetic analyses with a crn1Delta deletion mutation also are consistent with Crn1p regulating filament assembly rather than stability. Filament cross-linking depends on the coiled coil domain of Crn1p, suggesting a requirement for Crn1p dimerization. Assembly-promoting activity is independent of cross-linking and could be due to nucleation and/or accelerated polymerization. Crn1p also binds to microtubules in vitro, and microtubule binding is enhanced by the presence of actin filaments. Microtubule binding is mediated by a region of Crn1p that contains sequences (not found in other coronins) homologous to the microtubule binding region of MAP1B. These activities, considered with microtubule defects observed in crn1Delta cells and in cells overexpressing Crn1p, suggest that Crn1p may provide a functional link between the actin and microtubule cytoskeletons in yeast. 相似文献
13.
Stimulation of starved Dictyostelium amoebae with the chemoattractant cAMP produces a rapid increase in actin nucleation activity at 5 seconds which is cotemporal with an increase in actin assembly and a decrease in Ca(2+)-insensitive capping activity [1]. Further characterization of this capping activity, called aginactin, led to the isolation of an Hsc70 [2]. Here, we demonstrate that purified aginactin contains both Hsc70 and the heterodimeric barbed-end capping protein, cap32/34. Immunoprecipitation of cap32/34 from purified aginactin removes all capping activity while immunoprecipitation of Hsc70 does not, indicating that the capping activity of aginactin is an intrinsic property of cap32/34. Gel filtration and immunoprecipitation assays fail to demonstrate the existence of a stable, high affinity complex between Hsc70 and cap32/34 in either lysate supernatants or aginactin pools but indicate the presence of a transient, ATP-sensitive interaction in cell lysates. Reconstitution experiments with purified Hsc70 and cap32/34 demonstrate that Hsc70 neither stimulates nor inhibits the capping activity of native cap32/34. Furthermore, we measured a Kd of approx. 0.8 nM for the binding of cap32/34 to barbed ends of actin filaments in the absence or presence of Hsc70, in agreement with Kd values measured for purified capping protein from other sources. We conclude, therefore, that cap32/34 is responsible for the capping activity called aginactin and that Hsc70 is not a regulatory cofactor for cap32/34 in Dictyostelium but may function as a chaperone during assembly of the cap32/34 heterodimer. 相似文献
14.
This study extends the observations on the defects in pseudopod formation of ABP-120+ and ABP-120- cells by a detailed morphological and biochemical analysis of the actin based cytoskeleton. Both ABP-120+ and ABP-120- cells polymerize the same amount of F-actin in response to stimulation with cAMP. However, unlike ABP-120+ cells, ABP-120- cells do not incorporate actin into the Triton X-100-insoluble cytoskeleton at 30-50 s, the time when ABP-120 is incorporated into the cytoskeleton and when pseudopods are extended after cAMP stimulation in wild-type cells. By confocal and electron microscopy, pseudopods extended by ABP-120- cells are not as large or thick as those produced by ABP-120+ cells and in the electron microscope, an altered filament network is found in pseudopods of ABP-120- cells when compared to pseudopods of ABP-120+ cells. The actin filaments found in areas of pseudopods in ABP-120+ cells either before or after stimulation were long, straight, and arranged into space filling orthogonal networks. Protrusions of ABP-120- cells are less three-dimensional, denser, and filled with multiple foci of aggregated filaments consistent with collapse of the filament network due to the absence of ABP-120-mediated cross-linking activity. The different organization of actin filaments may account for the diminished size of protrusions observed in living and fixed ABP-120- cells compared to ABP-120+ cells and is consistent with the role of ABP-120 in regulating pseudopod extension through its cross-linking of actin filaments. 相似文献
15.
Close to the bases of the photoreceptive microvilli, arthropod photoreceptors contain a dense network of endoplasmic reticulum that is involved in the regulation of the intracellular calcium concentration, and in the biogenesis of the photoreceptive membrane. Here, we examine the role of the cytoskeleton in organizing this submicrovillar endoplasmic reticulum in honeybee photoreceptors. Immunofluorescence microscopy of taxol-stabilized specimens, and electron-microscopic examination of high-pressure frozen, freeze-substituted retinae demonstrate that the submicrovillar cytoplasm lacks microtubules. The submicrovillar region contains a conspicuous F-actin system that codistributes with the submicrovillar endoplasmic reticulum. Incubation of retinal tissue with cytochalasin B leads to depolymerization of the submicrovillar F-actin system, and to disorganization and disintegration of the submicrovillar endoplasmic reticulum, indicating that an intact F-actin cytoskeleton is required to maintain the architecture of this domain of the endoplasmic reticulum. We have also developed a permeabilized cell model in order to study the physiological requirements for the interaction of the endoplasmic reticulum with actin filaments. The association of submicrovillar endoplasmic reticulum with actin filaments appears to be independent of ATP, Ca2+ and Mg2+, suggesting a tight static anchorage. 相似文献
16.
The small GTPases Rho and Rac regulate actin filament assembly and the formation of integrin adhesion complexes to produce stress fibers and lamellipodia, respectively, in mammalian cells. Although numerous candidate effectors that might mediate these responses have been identified using the yeast two-hybrid and affinity purification techniques, their cellular roles remain unclear. We now describe a biological assay that allows components of the Rho and Rac signaling pathways to be identified. Permeabilization of serum-starved Swiss 3T3 cells with digitonin in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) induces both actin filament and focal adhesion complex assembly through activation of endogenous Rho and Rac. These responses are lost when GTPgammaS is added 6 min after permeabilization, but can be reconstituted using concentrated cytosolic extracts. We have achieved a 10,000-fold purification of the activity present in pig brain cytosol and protein sequence analysis shows it to contain moesin. Using recombinant proteins, we show that moesin and its close relatives ezrin and radixin can reconstitute stress fiber assembly, cortical actin polymerization and focal complex formation in response to activation of Rho and Rac. 相似文献
17.
CS Mermelstein M Benchimol M Taffarel M Cristina R Cordeiro C Chagas V Moura Neto 《Canadian Metallurgical Quarterly》1997,60(5):445-452
OBJECTIVES: To assess the effect of undertaking custodial care of a grandchild on grandparents' depression levels and to determine what characteristics are associated with higher depression levels among caregiving grandparents. DESIGN: A longitudinal national probability panel study: the National Survey of Families and Households. The first wave of data (n= 13 008) was collected in 1987 and 1988, and the second wave of data (n=10008) was collected from 1992 through 1994. SETTING: The survey was conducted in respondents' households in the coterminous United States. PARTICIPANTS: The subsample for this study was composed of 3111 respondents who reported being grandparents during the 1992-1994 interviews and for whom complete depression information was available. Of these grandparents, 158 were the primary caregivers for their grandchildren in the 1990s. MAIN OUTCOME MEASURES: Depression was measured using a modified version of the Center for Epidemiological Studies Depression Scale. RESULTS: Those who provide primary care for a grandchild are almost twice as likely to have levels of depressive symptoms above the traditional Center for Epidemiological Studies Depression Scale cut point of 16 (25.1% vs 14.5%). Even when controlling for baseline depression and demographic variables known to affect depressive symptoms, undertaking the care of a grandchild was associated significantly with higher depression levels in a multivariate prospective analysis (P<.01). Among caregiving grandparents, those who recently assumed caregiving responsibilities (P<.05) and women (P<.10) were more depressed and older respondents (P<.10) and those in good health (P<.001) were less depressed. CONCLUSIONS: Undertaking the primary care of a grandchild is associated with an increase in levels of depression. Particularly in light of the recent dramatic increase in the prevalence of grandparent caregiving in the United States, physicians need to explore familial role changes with midlife and older patients who have symptoms of depression. Special attention should be paid to the most at-risk subsets of grandparent caregivers: those who are new caregivers, those in poor health, those who are younger, and women. 相似文献
18.
We have identified a temperature-sensitive allele of the yeast divergent actin gene ACT2, act2-1, which displays defects in nuclear pore complex (NPC) structure and nuclear import at the restrictive temperature. Although defective in nuclear import, act2-1 cells still selectively retain reporter proteins in the nucleus, and by indirect immunofluorescence the actin cytoskeleton appears normal. Previous studies in Acanthamoeba and Saccharomyces cerevisiae reported that the cellular location of Act2p partially overlaps that of conventional actin, indicating that it has a cytoskeletal function. In this study, both immunofluorescence localization and cellular fractionation of different epitope-tagged versions of Act2p also reveal an association with the nucleus, suggesting an independent nuclear function for Act2p. Analysis of act2-1 by electron microscopy, 30 min after a shift to the restrictive temperature (37 degrees C), reveals a striking aberration in NPC morphology; NPCs appear as abnormal densities on either side of, rather than spanning, the nuclear envelope. Immunoelectron microscopy confirms that these densities contain XFXFG nucleoporins. act2-1 is synthetically lethal in combination with a deletion in the XFXFG nucleoporin gene, NUP1, or a mutation in the nuclear localization sequence receptor gene, SRP1. Act2p and Srp1p co-immunoprecipitate, suggesting that the proteins exist in a complex. Together our data argue that Act2p plays an important role in NPC structure and function. 相似文献
19.
The effect of two types of electrical stimulation designed to induce long-lasting plasticity of the Schaffer/commissural inputs to CA1 pyramidal neurons was investigated using in vitro hippocampal slices made from young (3-6 month) and old (24-27 month) Fischer 344 rats. The first stimulation paradigm, primed burst (PB) stimulation, consisted of a total of five physiologically patterned stimuli: a single priming pulse followed 170 ms later by a burst of four pulses at 200 Hz. The second stimulation paradigm, long-term potentiation (LTP) stimulation, consisted of a 200 Hz/1 second train (a total of 200 stimuli). Primed burst and LTP stimulation were equally effective at inducing a lasting increase in the population spike recorded from slices made from young rats. However, the enhancement of population spike amplitude produced by PB, but not LTP, stimulation was significantly less in slices made from old rats. These results suggest that the capacity of the hippocampus to demonstrate long-lasting synaptic plasticity is not altered with age, but that engaging plasticity-inducing mechanisms becomes more difficult. Furthermore, these data suggest that physiologically patterned paradigms for inducing long-lasting synaptic plasticity may more accurately assess the functional status of hippocampal memory encoding mechanisms than does conventional LTP stimulation. 相似文献