首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.  相似文献   

2.
The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, antigen receptors and cytokine receptors. Recent studies have suggested that tyrosine phosphorylation of Shc may play a key role in T lymphocyte proliferation via interaction of phosphorylated Shc with downstream molecules involved in activation of Ras and Myc proteins. However, the sites on Shc that are tyrosine phosphorylated in response to TCR engagement and the ability of different T cell tyrosine kinases to phosphorylate Shc have not been defined. In this report, we show that during TCR signaling, the tyrosines Y239, Y240 and Y317 of Shc are the primary sites of tyrosine phosphorylation. Mutation of all three tyrosines completely abolished tyrosine phosphorylation of Shc following TCR stimulation. Our data also suggest that multiple T cell tyrosine kinases contribute to tyrosine phosphorylation on Shc. In T cells, CD4/Lck-dependent tyrosine phosphorylation on Shc was markedly diminished when Y317 was mutated, suggesting a preference of Lck for the Y317 site. The syk-family kinases (Syk and ZAP-70) were able to phosphorylate the Y239 and Y240 sites, and less efficiently the Y317 site. Moreover, co-expression of Syk or ZAP-70 with Lck resulted in enhanced phosphorylation of Shc on all three sites, suggesting a synergy between the syk-family and scr-family kinases. Of the two potential Grb2 binding sites (Y239 and Y317), Y239 appears to play a greater role in recruiting Sos through Grb2. These studies have implications for Ras activation and mitogenic signaling during T cell activation.  相似文献   

3.
The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins.  相似文献   

4.
We have characterized some of the nerve growth factor (NGF) stimulated receptor tyrosine kinase (TrkA) signalling cascades in adult rat primary dorsal root ganglia (DRG) neuronal cultures and compared the pathways with those found in PC12 cells. TrkA receptors were phosphorylated on tyrosine residues in response to NGF in DRG neuronal cultures. We also saw phosphorylation of phospholipase Cgamma1 (PLCgamma1). We used recombinant glutathione-S-transferase (GST)-PLCgamma1 SH2 domain fusion proteins to study the site of interaction of TrkA receptors with PLCgamma1. TrkA receptors derived from DRG neuronal cultures bound preferentially to the amino terminal Src homology-2 (SH2) domain of PLCgamma1, but there was enhanced binding with tandemly expressed amino- and carboxy-terminal SH2 domains. The most significant difference in NGF signalling between PC12 cells and DRG was with the Shc family of adapter proteins. Both ShcA and ShcC were expressed in DRG neurons but only ShcA was detected in PC12 cells. Different isoforms of ShcA were phosphorylated in response to NGF in DRG and PC12 cells. NGF phosphorylated only one whereas epidermal growth factor phosphorylated both isoforms of ShcC in DRG cultures. Activation of the downstream mitogen-activated protein (MAP) kinase, p42Erk2 was significantly greater than p44Erk1 in DRG whereas both isoforms were activated in PC12 cells. Blocking the MAP kinase cascade using a MEK1/2 inhibitor, PD98059, abrogated NGF dependent capsaicin sensitivity, a nociceptive property specific to sensory neurons.  相似文献   

5.
We have studied nerve growth factor (NGF)-induced differentiation of PC12 cells to identify PKC isozymes important for neuronal differentiation. Previous work showed that tumor-promoting phorbol esters and ethanol enhance NGF-induced mitogen-activated protein (MAP) kinase activation and neurite outgrowth by a PKC-dependent mechanism. Ethanol also increases expression of PKCdelta and PKCepsilon, suggesting that one these isozymes regulates responses to NGF. To examine this possibility, we established PC12 cell lines that express a fragment encoding the first variable domain of PKCepsilon (amino acids 2-144), which acts as an isozyme-specific inhibitor of PKCepsilon in cardiac myocytes. Phorbol ester-stimulated translocation of PKCepsilon was markedly reduced in these PC12 cell lines. In addition, phorbol ester and ethanol did not enhance NGF-induced MAP kinase activation or neurite outgrowth in these cells. In contrast, phorbol ester and ethanol increased neurite outgrowth and MAP kinase phosphorylation in cells expressing a fragment derived from the first variable domain of PKCdelta. These results demonstrate that PKCepsilon mediates enhancement of NGF-induced signaling and neurite outgrowth by phorbol esters and ethanol in PC12 cells.  相似文献   

6.
Shc proteins are important substrates of receptor and cytoplasmic tyrosine kinases that couple activated receptors to downstream signaling enzymes. Phosphorylation of Shc tyrosine residues 239 and 317 leads to recruitment of the Grb2-Sos complex, thus linking Shc phosphorylation to Ras activation. We have used phosphorylated peptides corresponding to the regions spanning tyrosine 239/240 and 317 of Shc in an expression library screen to identify additional downstream targets of Shc. Here we report the identification of Gads, a novel adaptor protein most similar to Grb2 and Grap that contains amino and carboxy terminal SH3 domains flanking a central SH2 domain and a 120 amino acid unique region. Gads is most highly expressed in the thymus and spleen of adult animals and in human leukemic cell lines. The binding specificity of the Gads SH2 domain is similar to Grb2 and mediates the interaction of Gads with Shc, Bcr-Abl and c-kit. Gads does not interact with Sos, Cbl or Sam68, although the isolated carboxy terminal Gads SH3 domain is able to bind these molecules in vitro. Our results suggest that the unique structure of Gads regulates its interaction with downstream SH3 domain-binding proteins and that Gads may function to couple tyrosine-phosphorylated proteins such as Shc, Bcr-Abl and activated receptor tyrosine kinases to downstream effectors distinct from Sos and Ras.  相似文献   

7.
8.
SHIP is a SH2 domain-containing inositol polyphosphatase that is selectively tyrosine phosphorylated and associated with the adapter protein Shc in B lymphocytes upon co-crosslinking surface immunoglobulin and Fc gamma RIIB1. We previously observed that this stimulation condition is associated with a reduction in the interaction of Grb2 with phosphorylated Shc, an enhanced interaction of Shc with SHIP, and a block in the Ras signaling pathway. We proposed that the SH2 domain of SHIP competes with Grb2 in binding to phospho-Shc, resulting in a block in Ras signaling. To test this model, we examined the mode of SHIP-Shc interaction. Using recombinant Shc and SHIP interaction domains and purified Shc and SHIP phosphopeptides, we show that the interaction is bi-dentate such that the SH2 domain of SHIP recognizes phosphorylated Y317 and doubly-phosphorylated Y239/Y240 of Shc and the Shc PTB domain recognizes phosphorylated NPxpY motifs within SHIP. We observed no role for the Shc SH2 domain in the interaction. These findings are consistent with our earlier model that SHIP and Grb2 compete for binding to phospho-Shc and support the notion that, in addition to the hydrolysis of inositol phosphates and phospholipids, SHIP contributes to anti-proliferative biochemistry by blocking protein-protein interactions.  相似文献   

9.
The major substrates for the type I insulin-like growth factor (IGF-I) receptor are Shc and insulin receptor substrate (IRS) proteins. In the current study, we report that IGF-I induces a sustained tyrosine phosphorylation of Shc and its association with Grb2 in SH-SY5Y human neuroblastoma cells. The time course of Shc tyrosine phosphorylation parallels the time course of IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK). Transfection of SH-SY5Y cells with a p52 Shc mutant decreases Shc tyrosine phosphorylation and Shc-Grb2 association. This results in the inhibition of IGF-I-mediated ERK tyrosine phosphorylation and neurite outgrowth. In contrast, IGF-I induces a transient tyrosine phosphorylation of IRS-2 and an association of IRS-2 with Grb2. The time course of IRS-2 tyrosine phosphorylation and IRS-2-Grb2 and IRS-2-p85 association closely resembles the time course of IGF-I-mediated membrane ruffling. Treating cells with the phosphatidylinositol 3'-kinase inhibitors wortmannin and LY294002 blocks IGF-I-induced membrane ruffling. The ERK kinase inhibitor PD98059, as well as transfection with the p52 Shc mutant, has no effect on IGF-I-mediated membrane ruffling. Immunolocalization studies show IRS-2 and Grb2, but not Shc, concentrated at the tip of the extending growth cone where membrane ruffling is most active. Collectively, these results suggest that the association of Shc with Grb2 is essential for IGF-I-mediated neurite outgrowth, whereas the IRS-2-Grb2-phosphatidylinositol 3'-kinase complex may regulate growth cone extension and membrane ruffling.  相似文献   

10.
Plasmalopsychosine, a characteristic fatty aldehyde conjugate of beta-galactosylsphingosine (psychosine) found in brain white matter, enhances p140trk (Trk A) phosphorylation and mitogen-activated protein kinase (MAPK) activity and as a consequence induces neurite outgrowth in PC12 cells. The effect of plasmalopsychosine on neurite outgrowth and its prolonged activation of MAPK was similar to that of nerve growth factor (NGF), and the effect was specific to neuronal cells. Plasmalopsychosine was not capable of competing with cold chase-stable, high affinity binding of NGF to Trk A, indicating that plasmalopsychosine and NGF differ in terms of Trk A-activating mechanism. Tyrosine kinase inhibitors K-252a and staurosporine, known to inhibit the neurotrophic effect of NGF, also inhibited these effects of plasmalopsychosine, suggesting that plasmalopsychosine and NGF share a common signaling cascade. Plasmalopsychosine prevents apoptosis of PC12 cells caused by serum deprivation, indicating that it has "neurotrophic factor-like" activity. Taken together, these findings indicate that plasmalopsychosine may play an important role in development and maintenance of the vertebrate nervous system.  相似文献   

11.
Nerve growth factor (NGF) induces sustained activation of classical MAP kinase (MAPK, also known as ERK) and neuronal differentiation in PC12 cells, whereas epidermal growth factor (EGF) induces transient activation of ERK/MAPK and stimulates proliferation of the cells. Although previous studies showed that sustained activation of ERK/MAPK is important for neuronal differentiation of the cells, a recent report revealed that inhibition of the sustained phase of ERK/MAPK activation alone does not block neurite outgrowth caused by NGF. These results suggest requirement for an additional signaling pathway(s) triggered by NGF in neuronal differentiation. Here we show that NGF induces sustained activation of p38, a subfamily member of the MAPK superfamily, and that inhibition of the p38 pathway blocks neurite outgrowth in PC12 cells. Surprisingly, expression of constitutively active MAPK/ERK kinase (MAPKK, also known as MEK) results in p38 activation as well as ERK/MAPK activation, and a p38 inhibitor blocks neurite outgrowth caused by the constitutively active MAPKK/MEK. Moreover, constitutive activation of p38 is able to induce neurite outgrowth when combined with EGF treatment. These results reveal an essential role of p38 in neuronal differentiation in PC12 cells.  相似文献   

12.
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.  相似文献   

13.
Formation of a complex of the nucleotide exchange factor Sos, the SH2 and SH3 containing adaptor protein Grb2/Sem-5 and tyrosine phosphorylated EGF receptor and Shc has been implicated in the activation of Ras by epidermal growth factor (EGF) in fibroblasts: related mechanisms for activation of Ras operate in other cell types. An increase in the apparent molecular weight of Sos has been reported to occur after several minutes of receptor stimulation due to phosphorylation by mitogen-activated protein (MAP) kinases. We report here that treatment of human peripheral blood T lymphoblasts with phorbol esters causes a similar shift in mobility of Sos. This modification of Sos does not alter its ability to bind Grb2, but correlates with strong inhibition of the binding of the Sos/Grb2 complex to tyrosine phosphorylated sequences, either a tyrosine phosphopeptide in cell lysates or p36 in intact cells. This effect, along with the mobility shift of Sos, can be mimicked in vitro by phosphorylation of Sos by the mitogen-activated protein kinase, ERK1. A novel negative feedback mechanism therefore exists whereby activation of MAP kinases through Ras results in the uncoupling of the Sos/Grb2 complex from tyrosine kinase substrates without blocking the interaction of Sos with Grb2.  相似文献   

14.
The small GTPase RhoA plays a critical role in signaling pathways activated by serum-derived factors, such as lysophosphatidic acid (LPA), including the formation of stress fibers in fibroblasts and neurite retraction and rounding of soma in neuronal cells. Previously, we have shown that ectopic expression of v-Crk, an SH2/SH3 domain-containing adapter proteins, in PC12 cells potentiates nerve growth factor (NGF)-induced neurite outgrowth and promotes the survival of cells when NGF is withdrawn. In the present study we show that, when cultured in 15% serum or lysophosphatidic acid-containing medium, the majority of v-Crk-expressing PC12 cells (v-CrkPC12 cells) display a flattened phenotype with broad lamellipodia and are refractory to NGF-induced neurite outgrowth unless serum is withdrawn. v-Crk-mediated cell flattening is inhibited by treatment of cells with C3 toxin or by mutation in the Crk SH2 or SH3 domain. Transient cotransfection of 293T cells with expression plasmids for p160ROCK (Rho-associated coiled-coil-containing kinase) and v-Crk, but not SH2 or SH3 mutants of v-Crk, results in hyperactivation of p160ROCK. Moreover, the level of phosphatidylinositol-4,5-bisphosphate is increased in v-CrkPC12 cells compared to the levels in mutant v-Crk-expressing cells or wild-type cells, consistent with PI(4)P5 kinase being a downstream target for Rho. Expression of v-Crk in PC12 cells does not result in activation of Rac- or Cdc42-dependent kinases PAK and S6 kinase, demonstrating specificity for Rho. In contrast to native PC12 cells, in which focal adhesions and actin stress fibers are not observed, immunohistochemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphery of the cell and are connected to actin cables. The formation of focal adhesions correlates with a concomitant upregulation in the expression of focal adhesion proteins FAK, paxillin, alpha3-integrin, and a higher-molecular-weight form of beta1-integrin. Our results indicate that v-Crk activates the Rho-signaling pathway and serves as a scaffolding protein during the assembly of focal adhesions in PC12 cells.  相似文献   

15.
Engagement of the B-cell antigen receptor (BCR) or the nerve growth factor receptor (NGFR/TrkA) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. We show that addition of NGF or anti-IgM antibody leads to the early tyrosine phosphorylation of p95(vav), which is expressed exclusively in hematopoietic cells; NGF, similar to crosslinking the BCR, also results in the rapid activation of Ras. The phosphorylation of Vav and activation of Ras triggered by NGF is mediated through Trk tyrosine kinase, whereas signaling through the BCR uses a different tyrosine kinase. We also show that NGF induces tyrosine phosphorylation of Shc and its association with Grb2. Vav and Ras with the adaptor proteins Shc and Grb2 appear to serve as a link between different receptor-mediated signaling pathways and, in human B cells, may play an important regulatory role in neuroimmune interactions.  相似文献   

16.
Cholecystokinin (CCK) has recently been shown to activate the mitogen-activated protein kinase (MAPK) cascade (Ras-Raf-MAPK kinase-MAPK) in pancreatic acini. The mechanism by which the Gq protein-coupled CCK receptor activates Ras, however, is currently unknown. Growth factor receptors are known to activate Ras by means of adaptor proteins that bind to phosphotyrosine domains. We therefore compared the effects of CCK and epidermal growth factor (EGF) on Tyr phosphorylation of the adaptor proteins Shc and its association with Grb2 and the guanine nucleotide exchange factor SOS. Three major isoforms of Shc (p46, p52, p66) were detected in isolated rat pancreatic acini with p52 Shc being the predominant form. CCK and EGF increased tyrosyl phosphorylation of Shc (251 and 337% of control, respectively). CCK-stimulated tyrosyl phosphorylation of Shc as well as Shc-Grb2 complex formation was significant at 2.5 min, maximal at 5 min, and persisted for at least 30 min. Finally, SOS was found to be associated with Grb2 as assessed by probing of anti-Grb2 immunoprecipitates with anti-SOS. Since MAPK in pancreatic acini is activated via protein kinase C (PKC), we studied the effect of phorbol esters on Shc phosphorylation and found 12-O-tetradecanoylphorbol-13-acetate to be as potent as CCK. Furthermore, GF-109203X, a PKC inhibitor, abolished the effect of 12-O-tetradecanoylphorbol-13-acetate and also the effect of CCK but not the effect of EGF on Shc tyrosyl phosphorylation. CCK-induced tyrosyl phosphorylation of Shc was found to be phosphatidylinositol 3-kinase-independent, and CCK did not cause EGF receptor activation. These results suggest that formation of an Shc-Grb2-SOS complex via a PKC-dependent mechanism may provide the link between Gq protein-coupled CCK receptor stimulation and Ras activation in these cells.  相似文献   

17.
Adult rat chromaffin cells may proliferate or extend neurites when stimulated by nerve growth factor (NGF) but their response is predominantly proliferative, making them a unique model for studying how mitogenic specificity is achieved. We examined contributions of the NGF receptors trk and p75 and of the major NGF signaling pathways to proliferation versus neurite outgrowth. The type of initial NGF response does not correlate with intensity of immunoreactivity for trk or p75. However, proliferation is initiated at lower NGF concentrations than neurite outgrowth, suggesting that it requires a less intense signal. Mitogenic cooperativity between receptors at low NGF concentrations is suggested by inhibitory effects of p75-blocking antibodies, but responses to trk-agonist antibody indicate that trk activation alone can induce proliferation. NGF-induced phosphorylation of ras-mediated mitogen-activated protein kinases (MAPK) Erk1 and Erk2 is as prolonged in normal chromaffin cells as in PC12 cells, where NGF is neuritogenic. Trk-agonist antibody, which is as mitogenic as NGF but less neuritogenic, causes equally prolonged but less intense ERK phosphorylation. The MAPK kinase(MEK-1) inhibitor PD98059 partially inhibits Erk phosphorylation and does not inhibit chromaffin cell proliferation, while depolarization selectively inhibits proliferation without blocking Erk phosphorylation. Proliferation is markedly reduced by the phosphoinositol-3 (PI-3) kinase inhibitor LY294002 while downregulation of protein kinase C (PKC) causes no change. These findings suggest that low-level, rather than short-duration, stimulation of NGF signaling pathways causes NGF to be mitogenic. Ras-mediated MAPK activation may be more critical in neurite outgrowth than in proliferation and PI-3 kinase may be the major mitogenic determinant.  相似文献   

18.
BACKGROUND & AIMS: Long-term ethanol intake suppresses liver regeneration in vivo and ethanol interferes with epidermal growth factor (EGF)-induced DNA synthesis in vitro. Therefore, the effects of long-term ethanol treatment on EGF-activated signaling reactions in rat hepatocytes were investigated. METHODS: Hepatocytes from long-term ethanol-fed rats and pair-fed controls were stimulated with EGF (0.5-20 nmol/L) for 15-120 seconds. Tyrosine phosphorylation of EGF receptor (EGFR), Shc, and phospholipase-C gamma1 (PLC gamma), and growth factor receptor binding protein 2 (Grb2) coprecipitation with EGFR and Shc were analyzed by Western blotting. RESULTS: EGFR autophosphorylation was suppressed at all EGF concentrations in ethanol-fed cells compared with pair-fed cells, without significant differences in total EGFR protein or EGFR tyrosine kinase activity detected in cell lysates, suggesting that intracellular factors suppressed EGFR function. EGF-induced PLC gamma tyrosine phosphorylation and inositol 1,4,5-trisphosphate (InsP3) formation were suppressed, but cytosolic [Ca2+]c elevation was little affected, indicating enhanced InsP3-mediated intracellular Ca2+ release in ethanol-fed cells. Grb2 binding to EGFR was suppressed, but EGF-induced Shc tyrosine phosphorylation and Grb2 association with Shc were not significantly decreased. CONCLUSIONS: Long-term ethanol feeding suppressed EGF-induced receptor autophosphorylation in rat hepatocytes with differential inhibition of downstream signaling processes mediated by PLC gamma, Shc, and Grb2. Altered patterns of downstream signals emanating from EGFR may contribute to deficient liver regeneration in chronic alcoholism.  相似文献   

19.
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.  相似文献   

20.
Fibroblast growth factor receptor (FGFR) activation leads to receptor autophosphorylation and increased tyrosine phosphorylation of several intra cellular proteins. We have previously shown that autophosphorylated tyrosine 766 in FGFR1 serves as a binding site for one of the SH2 domains of phospholipase Cy and couples FGFR1 to phosphatidylinositol hydrolysis in several cell types. In this report, we describe the identification of six additional autophosphorylation sites (Y-463, Y-583, Y-585, Y-653, Y-654 and Y-730) on FGFR1. We demonstrate that autophosphorylation on tyrosines 653 and 654 is important for activation of tyrosine kinase activity of FGFR1 and is therefore essential for FGFR1-mediated biological responses. In contrast, autophosphorylation of the remaining four tyrosines is dispensable for FGFR1-mediated mitogen-activated protein kinase activation and mitogenic signaling in L-6 cells as well as neuronal differentiation of PC12 cells. Interestingly, both the wild-type and a mutant FGFR1 (FGFR1-4F) are able to phosphorylate Shc and an unidentified Grb2-associated phosphoprotein of 90 kDa (pp90). Binding of the Grb2/Sos complex to phosphorylated Shc and pp90 may therefore be the key link between FGFR1 and the Ras signaling pathway, mito-genesis, and neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号