首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Strategies used to reduce emissions of N2O and CH4 in rice production normally include irrigation management and fertilization. To date, little information has been published on the measures that can simultaneously reduce both emissions. Effects of application of a urease inhibitor, hydroquinone (HQ), and a nitrification inhibitor, dicyandiamide (DCD) together with urea (U) on N2O and CH4 emission from rice growing were studied in pot experiments. These fertilization treatments were carried out in the presence and absence of wheat straw, applied to the soil surface. Without wheat straw addition, in all treatments with inhibitor(s) the emission of N2O and CH4 was significantly reduced, as compared with the treatment whereby only urea was applied (control). Especially for the U+HQ+DCD treatment, the total emission of N2O and CH4 was about 1/3 and 1/2 of that in the control, respectively. In the presence of wheat straw, the total N2O emission from the U+HQ+DCD treatment was about 1/2 of that from the control. The total CH4 emission was less influenced. Wheat straw addition, however, induced a substantial increase in emissions of N2O and CH4. Hence, simultaneous application of organic materials with a high C/N ratio and N-fertilizer (e.g. urea) is not a suitable method to reduce the N2O and CH4 emission. Application of HQ+DCD together with urea seemed to improve the rice growth and to reduce both emissions. The NO3 -N content of the rice plants and denitrification of (NO3 +NO2 )-N might contribute to the N2O emission from flooded rice fields.  相似文献   

2.
Nitrous oxide (N2O) emissions and denitrification losses from an irrigated sandy loam soil amended with composted municipal solid waste (MSW), sheep manure (SM), surface applied pig slurry (SPS), incorporated pig slurry (IPS) or urea (U) were studied under Mediterranean conditions. We quantified emissions, in both the presence and absence of maize and N2O production, via denitrification and nitrification pathways using varying concentrations of acetylene. Discounting the N2O lost in the Control, the percentages of N2O lost in relation to the total N applied were greater for urea (1.80%) than for MSW (0.50%), SM (0.46%), SPS (1.02%) or IPS (1.27%). In general, plots treated with organic fertilisers emitted higher amounts of N2O when under maize than bare soil plots. On the other hand, greater denitrification losses were also recorded for plots in the absence of plants (between 9.7 and 29.3 kg N2O-N ha−1) than for areas with plants (between 7.1 and 24.1 kg N2O-N ha−1). The proportion of N2O produced via denitrification was greater from fertiliser treatments than for the controls and also greater without plants (between 66 and 91 % of the N2O emitted) than with plants (between 48 and 81%).  相似文献   

3.
In a 3-year field experiment the effect of the new nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate, trade name ENTEC) on the release of N2O and on methane oxidation was examined in comparison to dicyandiamide (DCD). Soil samples were analysed for the concentrations of ammonium, nitrite, nitrate and for the degradation kinetics of DMPP as well as DCD. DMPP decreased the release of N2O by 41% (1997), 47% (1998) and 53% (1999) (with an average of 49%) while DCD reduced N2O emissions by 30% (1997), 22% (1998) and 29% (1999) (with an average of 26%), respectively. Both nitrification inhibitors (NI) failed to affect methane oxidation negatively. The plots that received DCD or DMPP, respectively, even seem to function as enhanced sinks for atmospheric methane. DMPP apparently stimulated methane oxidation by ca. 28% in comparison to the control. The concentrations of ammonium remained unaffected by nitrification inhibitors whereas the amounts of nitrite diminished in the plots treated with DCD by 25% and with DMPP by 20%, respectively. Nitrate concentrations in soil were in both NI treatments 23% lower than in the control. DMPP and DCD did not affect the yields of summer barley, maize and winter wheat significantly. Dicyandiamide was mineralized more rapidly than DMPP (data for the cropping season in 1997 as an example). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Nitrous oxide is produced in soils and sediments essentially through the processes of nitrification and denitrification, although several rival processes could be competing. This study was undertaken in order to better understand the controlling factors of nitrification, denitrification and associated N2O production as well as the contribution of these two processes to the average N2O production by soils and sediments. With this aim, soil and sediment samples were taken in contrasting periods and different land use types, each time at different depths (upper and lower soil horizons). They were incubated in separate batches in specific conditions to promote denitrification and nitrification: (1) a complete anaerobic environment adding KNO3 for the denitrification assay and (2) an aerobic environment (21 % O2) with addition of NH4Cl for the nitrification assay. Potentials of nitrification and denitrification were determined by the rates of nitrate either reduced (for denitrification) or produced (for nitrification). Overall, denitrification potential varied from 70 to 2,540 ng NO 3 -N g?1 dry soil h?1 and nitrification potential from 30 to 1,150 ng NO3 ?-N g?1 dry soil h?1. Nitrous oxide production by denitrification was significantly (P < 0.05) greater in topsoils (10–30 cm) than in subsoils (90–110 cm), ranging, respectively, from 26 to 250 ng N2O-N g?1 dry soil h?1 versus 1.5 to 31 ng N2O-N g?1 dry soil h?1, i.e., a mean 19.5 versus. 6.0 % of the NO3 ? denitrified for the upper and lower horizons, respectively. Considering the N2O production in relation with the nitrate production (e.g., nitrification), no significant difference (P < 0.05) was found in the soil profile, which ranged from 0.03 to 6 ng N2O-N g?1 dry soil h?1. This production accounts for 0.21 and 0.16 % of the mean of the NO3 ? produced for the top and subsoils, respectively. On the basis of the average production by both top- and subsoils, N2O production by denitrification is clearly greater than by nitrification under the measurement conditions used in this study, from 30- to 100-fold higher. Such a high potential of N2O emission must be taken into account when reducing nitrate contamination by increasing denitrification is planned as a curative measure, e.g. in rehabilitation/construction of wetlands.  相似文献   

5.
Yield response of summer cabbage (Brassica oleracea varcapitata cv. Hispi F1) to N applied as organic (activated sewage sludge derived protein [Protox] and dried blood) and inorganic (ammonium nitrate, ammonium sulphate, sodium nitrate and urea) fertilizers was compared in relation to the N availability characteristics of the materials. Effects of the nitrification inhibitor dicyandiamide (DCD) on N release, crop yield and N status were also assessed. In addition CO2 efflux was measured from amended soil to determine effects of fertilizer application on soil microbial activity. The organic N sources were mineralized quickly on application to soil and exhibited similar patterns of NH4-N depletion and NO3-N accumulation as functions of thermal-time as with mineral fertilizers. However, the yield response to organic N was marginally smaller (though not significantly) compared with mineral forms; probably because less N was released to the crop. This was reflected in smaller total N concentrations and N recoveries in plants supplied with organic fertilizer. Applied DCD increased the thermal-time for complete nitrification of NH4-N sources and raised the total N content of the crop, but had no overall effect on crop growth. In contrast to inorganic N sources which generally reduced CO2 efflux from soil, application of protein-based fertilizers increased the rate of soil microbial activity directly by raising substrate availability. Sewage sludge derived protein provided an effective alternative to mineral fertilizers for the nutrition of summer cabbage whilst minimising stress of the soil environment which may occur following the application of conventional forms of inorganic N to the soil.  相似文献   

6.
Five field experiments and one greenhouse experiment were carried out to assess the effects of nitrogen (N) fertilizer type and the amount of applied N fertilizer on nitrous oxide (N2O) emission from grassland. During cold and dry conditions in early spring, emission of N2O from both ammonium (NH 4 + ) and nitrate (NO 3 ) containing fertilizers applied to a clay soil were relatively small, i.e. less than 0.1% of the N applied. Emission of N2O and total denitrification losses from NO 3 containing fertilizers were large after application to a poorly drained sand soil during a wet spring. A total of 5–12% and 8–14% of the applied N was lost as N2O and via denitrification, respectively. Emissions of N2O and total denitrification losses from NH 4 + fertilizers and cattle slurry were less than 2% of the N applied. Addition of the nitrification inhibitor dicyandiamide (DCD) reduced N2O fluxes from ammonium sulphate (AS). However, the effect of DCD to reduce total N2O emission from AS was much smaller than the effect of using NH 4 + fertilizer instead of NO 3 fertilizer, during wet conditions. The greenhouse study showed that a high groundwater level favors production of N2O from NO 3 fertilizers but not from NH 4 + fertilizers. Inereasing calcium ammonium nitrate (CAN) application increased the emitted N2O on grassland from 0.6% of the fertilizer application rate for a dressing of 50 kg N ha–1 to 3.1% for a dressing of 300 kg N ha–1. In another experiment, N2O emission increased proportionally with increasing N rate. The results indicate that there is scope for reducing N2O emission from grasslands by choosing the N fertilizer type depending on the soil moisture status. Avoiding excessive N application rates may also minimize N2O emission from intensively managed grasslands.  相似文献   

7.
Nitrous oxide (N2O) is a potent greenhouse gas released from high rainfall cropping soils, but the role of management in its abatement remains unclear in these environments. To quantify the relative influence of management, nitrogen (N) fertiliser and soil nitrification inhibitor was applied to separate but paired raised bed and conventionally flat field experiments in south west Victoria, to measure emissions and income from wheat and canola planted 2 and 3 years after conversion from a long-term pasture. Management included four different rates of N fertiliser, top-dressed with and without the nitrification inhibitor Dicyandiamide (DCD), which was applied in solution to the soil in the second year of experimentation. Crop biomass, grain yield, soil mineral N, soil temperature and soil water and N2O flux were measured. Static chamber methodology was used to identify relative differences in N2O loss between management. In the second crop (wheat) following conversion, N2O losses were up to 72 % lower (P < 0.05) in the furrows, receiving the lower rate of N fertiliser compared with the highest rate, with less frequent reductions observed in the third crop (canola); losses of N2O from the beds was unaffected by N rate, perhaps from nitrate leakage into the adjacent furrow of the raised bed experiment. On the nearby flat experiment, nitrate leaching may have diminished the effects of N rate and DCD on N2O flux. Furthermore the extra N did not significantly increase grain yield in either the wheat or canola crops on both experiments. The application of DCD in the canola crop temporarily reduced (P < 0.05) N2O production by up to 84 % from the beds, 83 % in the adjacent furrows and 75 % on the flat experiment. Grain yield was not significantly (P < 0.001) affected however, canola income was reduced by $1407/ha and $1252/ha, compared with no addition of inhibitor on the respective bed and flat experiments. Although N2O fluxes are driven by environmental episodic events, management will play a role in N2O abatement. However, DCD currently appears economically unfeasible and matching N fertiliser supply to meet crop demand appears a better option for minimising N2O losses from high rainfall cropping systems.  相似文献   

8.
Slurry separation using mechanical and chemical methods is one of the options considered to solve problems of slurry management at the farm scale. The fractions obtained with such treatments have distinct compositions, which allow different options for their utilization (composting, direct application, and fertigation). In this study, four fractions of slurry were obtained using a combined treatment system including slurry treatment with a screw press separator (solid and liquid fractions) followed by sedimentation with the addition of Polyacrylamide (PAM) (PAM-Supernatant and PAM-Sediment) to the LF. These fractions were then incorporated into arable soil under controlled laboratory conditions and the organic N degradation from each treatment was followed for 94 days. Total N emissions (N2O + N2) as well as the sources of the N emissions (nitrification or denitrification) were also studied during this period. Results showed that the slurry fractions (SFs) had distinct behavior relative to the whole slurry (WS), namely in terms of N degradation in soil, where N mineralization was observed only in the WS treatment whereas N immobilization occurred in the other treatments. In terms of N2O emissions, higher losses, expressed as a percentage of the total N added, occurred from the LF treatments (liquid, PAM-Supernatant and PAM-Sediment). This work indicates that the slurry treatment by mechanical and chemical separation may be a good option for slurry management at the farm scale since it allows greater utilization of the different fractions with a small effect on N2O emissions after SFs’ application to soil.  相似文献   

9.
Agricultural soils are a significant source of nitrous oxide (N2O). Since mitigation of greenhouse gas emissions is needed in all sectors of society, it is important to identify the processes producing N2O and the factors affecting the production rates in agricultural soils. This study aimed to elucidate the N2O production in peat, clay and loamy sand at four different soil moisture conditions (40, 60, 80 and 100% Water Filled Pore Space). The ace­tylene inhibition technique was used to evaluate the contribution of nitrification to N2O production. Nitrous oxide production responded markedly to soil moisture in all three soils. The highest N2O production, measured at the wettest soils (100% WFPS), was up to four orders of magnitude higher than that at the dry soils (40% WFPS). In dry conditions N2O production decreased in the order of peat > clay > loamy sand, while in wet conditions the highest N2O production was measured in loamy sand, then in peat, and the lowest in clay soils. Nitrification was the dominant N2O producing process in all the soils at 60% WFPS. In the sandy soil 70% of the total N2O production originated from nitrification, while in the peat soil most of the total N2O production originated from denitrification. Data on processes producing N2O in agricultural soils are needed to develop process-based models that could reduce the uncertainty of the emission estimates in greenhouse gas inventories.  相似文献   

10.
生活污水不同生物脱氮过程中N_2O产量及控制   总被引:7,自引:2,他引:5       下载免费PDF全文
巩有奎  王赛  彭永臻  王淑莹 《化工学报》2010,61(5):1286-1292
利用好氧-缺氧SBR反应器和全程曝气SBBR反应器处理生活污水,分别实现了全程、短程和同步硝化反硝化脱氮过程,研究了不同脱氮过程中N2O的产生及释放情况,同时考察了不同DO条件下同步脱氮效率及N2O产生量。结果表明,全程、短程生物脱氮过程中N2O主要产生于硝化过程,反硝化过程有利于降低系统N2O产量。全程、短程、同步硝化反硝化脱氮过程中N2O产量分别为4.67、6.48和0.35mg.L-1。硝化过程中NO2-N的积累是导致系统N2O产生的主要原因。部分AOB在限氧条件下以NH4+-N作为电子供体,NO2-N作为电子受体进行反硝化,最终产物是N2O。不同DO条件下同步硝化反硝化过程中N2O的产生表明:控制SBBR系统中DO浓度达到稳定的同步脱氮效率可使系统N2O产量最低。  相似文献   

11.
Field experiments with silage maize during eight years on a sandy soil in The Netherlands, showed that dicyandiamide (DCD) addition to autumn-applied cattle slurry retarded nitrification, thus reducing nitrate losses during winter. Spring-applied slurry without DCD, however, was on average associated with even lower losses and higher maize dry matter yields.Economically optimum supplies of mineral N in the upper 0.6 m soil layer in spring (EOSMN), amounted to 130–220 kg ha–1. Year to year variation of EOSMN could not be attributed to crop demand only. According to balance sheet calculations on control plots, apparent N mineralization between years varied from 0.36 to 0.94 kg ha–1 d–1. On average, forty percent of the soil mineral N (SMN) supply in spring, was lost during the growing season. Hence, the amounts of residual soil mineral N (RSMN) were lower than expected. Multiple regression with SMN in spring, N crop uptake and cumulative rainfall as explanatory variables, could account for 79 percent of the variation in RSMN.Postponement of slurry applications to spring and limiting N inputs to economically optimum rates, were insufficient measures to keep the nitrate concentration in groundwater below the EC level for drinking water.  相似文献   

12.
Sources of nitrous oxide in soils   总被引:21,自引:0,他引:21  
Research to identify sources of nitrous oxide (N2O) in soils has indicated that most, if not all, of the N2O evolved from soils is produced by biological processes and that little, if any, is produced by chemical processes such as chemodenitrification. Early workers assumed that denitrification was the only biological process responsible for N2O production in soils and that essentially all of the N2O evolved from soils was produced through reduction of nitrate by denitrifying microorganisms under anaerobic conditions. It is now well established, however, that nitrifying microorganisms contribute significantly to emissions of N2O from soils and that most of the N2O evolved from aerobic soils treated with ammonium or ammonium-yielding fertilizers such as urea is produced during oxidation of ammonium to nitrate by these microorganisms. Support for the conclusion that chemoautotrophic nitrifiers such as Nitrosomonas europaea contribute significantly to production of N2O in soils treated with N fertilizers has been provided by studies showing that N2O emissions from such soils can be greatly reduced through addition of nitrification inhibitors such as nitrapyrin, which retard oxidation of ammonium by chemoautotrophic nitrifiers but do not retard reduction of nitrate by denitrifying microorganisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The influence of the nitrification inhibitor dicyandiamide (DCD) on the turnover of15N-labelled ammonium sulfate (AS) was investigated in two soils under aerobic and waterlogged conditions. Nitrification of ammonium sulfate was markedly inhibited by addition of DCD in both soils. Up to 45% of the supplied N was transformed into a non-extractable N form, which only slowly released nitrogen over 147 or 264 days. This immobilization was higher in the presence of DCD than without DCD. In all aerobic experiments, the recovery was 100% ± max. 2.4%, indicating that no gaseous losses of N occurred.If aerobic preincubation of 28 or 42 days was followed by water-logging with H2O or a solution of glucose, considerable N losses occurred only in presence of the carbohydrate. DCD retarded nitrification and thus reduced losses by denitrification from 61 to 15%.DCD application resulted in an increased immobilization of labelled N into the non-exchangeable soil N fraction. This amounted to more than 50% of the applied N, compared to 39% without DCD.The late Dr. Klaus Vilsmeier, a very dedicated and talented young scientist, died before he was able to finish completely the revised version of this article. We will always keep him in our minds and kindly remember his kind personality as well as his sense of humour and justice. Prof. Dr. Heiner Goldbach on behalf of all members of the department.  相似文献   

14.
Emissions of nitrous oxide (N2O) and nitric oxide (NO) have been identified as one of the most important sources of atmospheric pollution from grasslands. Soils are major sources for the production of N2O and NO, which are by-products or intermediate products of microbial nitrification and denitrification processes. Some studies have tried to evaluate the importance of denitrification or nitrification in the formation of N2O or NO but there are few that have considered emissions of both gases as affected by a wide range of different factors. In this study, the importance of a number of factors (soil moisture, fertiliser type and temperature) was determined for N2O and NO emissions. Nitrous oxide and NO evolution in time and the possibility of using the ratio NO:N2O as an indicator for the processes involved were also explored. Dinitrogen (N2) and ammonia (NH3) emissions were estimated and a mass balance for N fluxes was performed. Nitrous oxide and NO were produced by nitrification and denitrification in soils fertilised with and by denitrification in soils fertilised with . Water content in the soil was the most important factor affecting N2O and NO emissions. Our N2O and NO data were fitted to quadratic (r=0.8) and negative exponential (r=0.7) equations, respectively. A long lag phase was observed for the N2O emitted from soils fertilised with (denitrification), which was not observed for the soils fertilised with (nitrification) and was possibly due to a greater inhibiting effect of low temperatures on microbial activity controlling denitrification rather than on nitrification. The use of the NO:N2O ratio as a possible indicator of denitrification or nitrification in the formation of N2O and NO was discounted for soils fertilised with . The N mass balance indicated that about 50 kg N ha−1 was immobilised by microorganisms and/or taken up by plant roots, and that most of the losses ocurred in wet soils (WFPS >60%) as N2 and NH3 losses (>55%).  相似文献   

15.
Agriculture contributes considerably to the emission of greenhouse gases, such as N2O and CH4. Here we summarize results from previous pot experiments assessing the effectiveness of urease and nitrification inhibitors reducing both N2O and CH4 emissions from wheat and rice cropping systems fertilized with urea (U). For the wheat cropping system, using a cambisol, we observed that the application of U with hydroquinone (HQ, a urease inhibitor), U with dicyandiamide (DCD, a nitrification inhibitor) and U with HQ plus DCD decreased the N2O emissions by 11.4, 22.3 and 25.1%, respectively. For the rice copping system, using a luvisol, we found that the application of U with HQ, U with DCD and U with HQ plus DCD decreased N2O emissions by 10.6, 47.0 and 62.3%, respectively, and CH4 emissions by 30.1, 53.1 and 58.3%, respectively. In terms of total global warming potential (GWP) a reduction of 61.2% could be realized via the combined addition of HQ and DCD. The addition of wheat straw reduced the activity of HQ and DCD in the rice cropping experiments. In terms of total GWP only a reduction of 30.7% could be achieved. In general, both in upland and flooded conditions, the application of HQ and DCD alone was less effective than HQ in combination with DCD, but not significantly for U plus DCD treatment. Our observations may be further constrained, however, by practical, economic or social problems and should therefore be tested at the scale of a region (e.g. a watershed) and related to an integrated abatement of agricultural N losses.  相似文献   

16.
The effect of liming an acidic mineral soil (Dystric Nitosol from southern China), used for arable agriculture, on N2O emission was studied in an incubation experiment. After the soil pH had been raised from pH 4.4 to 5.2, 6.7 and 8.1, soil samples were either amended with NH4 + and incubated aerobically, favoring nitrification or, after application of NO3 , the incubation took place under anaerobic conditions, favoring denitrification. Gas sampling for N2O determination and soil analyses were performed at regular intervals up to 13 days. Under nitrification conditions only small N2O emission rates were observed (max. 6 g N kg–1 d–1) with significant differences between high and low pH values during the first 2 days of incubation. The nitrifying activity was low, even with high pH, and this, together with good aeration conditions, could partly explain the small N2O evolution. During denitrification, however, cumulative N2O emissions reached much higher values (1600 g N kg–1 in comparison to 40 g N kg–1 under nitrification conditions). N2O emission during denitrification was significantly enhanced by increasing soil pH. Under alkaline conditions (pH 8.1) a large nitrite accumulation occurred, which was in line with the highest nitrate reductase activity determined in this treatment. The limited availability of organic carbon is probably the main reason for the absence of further reduction of NO2 to N2O or N2. At pH 6.7 the total N2O emission was slightly higher than at pH 8.1, although the start of pronounced emissions was retarded and only small amounts of NO2 accumulated. Acid soil conditions caused either negligible (pH 4.4) or only small (pH 5.2) N2O emissions. It can be concluded that these kinds of soil, used alternatively for production of upland crops or paddy rice, are prone to high N2O emissions after flooding, particularly under neutral to alkaline conditions. In order to avoid major N2O evolution and accumulation of nitrite, which can be leached into groundwater, the pH should not be raised to values above 5.5–6.  相似文献   

17.
Replacement of high-input N fertilized pastures with low-input grass-legume pastures may provide a mitigation option to reduce agricultural N2O emissions. This study examined the relationship between N-cycling rates and N2O production and evolution from the root zone of grass-clover pastures of various ages (production year 1, 2 and 8). The experimental approach included cross-labelling pasture monoliths with 15N-enriched substrates to identify sources of N2O, in combination with assessment of gross N mineralization and nitrification. Nitrous oxide emissions were generally low, fluctuating between 82 and 136μg N2O–N m−2 d−1, independent of pasture age. The 15N labelling indicated that at least 50% of the N2O was derived from the soil NH4+ pool, approaching 100% in June. In the two year old pasture the NH4+ pool contributions to N2O emissions varied significantly with sampling time. Emission rates of N2O correlated positively with soil NH4+ concentrations and the NH4+ supply as expressed by gross mineralization. The N2O emissions showed a significant inverse relationship with soil NO3, but was not correlated with the supply of NO3 as expressed by gross nitrification. The ratio N2O vs. nitrification averaged 0.05% (range 0.004 to 0.29%) and varied with sampling time showing the lowest value in wet soil conditions.  相似文献   

18.
Grazed pastures contribute significantly to anthropogenic emissions of N2O but the respective contributions of archaea, bacteria and fungi to codenitrification in such systems is unresolved. This study examined the relative contributions of bacteria and fungi to rates of denitrification and codenitrification under a simulated ruminant urine event. It was hypothesised that fungi would be primarily responsible for both codenitrification and total N2O and N2 emissions. The effects of bacterial (streptomycin), fungal (cycloheximide), and combined inhibitor treatments were measured in a laboratory mesocosm experiment, on soil that had received 15N labelled urea. Soil inorganic-N concentrations, N2O and N2 gas fluxes were measured over 51 days. On Days 42 and 51, when nitrification was actively proceeding in the positive control, the inhibitor treatments inhibited nitrification as evidenced by increased soil NH 4 + -N concentrations and decreased soil NO 2 ? -N and NO 3 ? -N concentrations. Codenitrification was observed to contribute to total fluxes of both N2O (≥ 33%) and N2 (≥ 3%) in urine-amended grassland soils. Cycloheximide inhibition decreased NH 4 + 15N enrichment and reduced N2O fluxes while reducing the contribution of codenitrification to total N2O fluxes by ≥ 66 and ≥ 42%, respectively. Thus, given archaea do not respond to significant urea deposition, it is proposed that fungi, not bacteria, dominated total N2O fluxes, and the codenitrification N2O fluxes, from a simulated urine amended pasture soil.  相似文献   

19.
Nitrous oxide can be produced during nitrification, denitrification, dissimilatory reduction of NO 3 - to NH 4 + and chemo-denitrification. Since soils are a mosaic of aerobic and anaerobic zones, it is likely that multiple processes are contributing simultaneously to N2O production in a soil profile. The N2O produced by all processes may mix to form one pool before being reduced to N2 by denitrification. Reliable methods are needed for measuring the fluxes of N2O and N2 simultaneously from agricultural soils. The C2H2 inhibition and 15N gas-flux methods are suitable for use in undisturbed soils in the field. The main disadvantage of C2H2 is that as well as blocking N2O reductase, it also blocks nitrification and dissimilatory reduction of NO 3 - to NH 4 + . Potentially the 15 N gas-flux method can give reliable measurements of the fluxes of N2O and N2 when all N transformation processes proceed naturally. The analysis of 15N in N2 and N2O is now fully automated by continuous-flow isotope-ratio mass spectrometry for 12-ml gas samples contained in septum-capped vials. Depending on the methodology, the limit of detection ranges from 4 to 11 g N ha-1day-1 for N2 and 4 to 15 g N ha-1day-1 for N2O. By measuring the 15N content and distribution of 15N atoms in the N2O molecules, information can also be obtained to help diagnose the sources of N2O and the processes producing it. Only a limited number of field studies have been done using the 15N gas-flux method on agricultural soils. The measured flux rates and mole fractions of N2O have been highly variable. In rain-fed agricultural soils, soil temperature and water-filled pore space change with the weather and so are difficult to modify. Soil organic C, NO 3 - and pH should be amenable to more control. The effect of organic C depends on the degree of anaerobiosis generated as a result of its metabolism. If conditions for denitrification are not limiting, split applications of organic C will produce more N2O than a single application because of the time lag in the synthesis of N2O reductase. Increasing the NO 3 - concentration above the K m value for NO 3 - reductase, or decreasing soil pH from 7 to 5, will have little effect on denitrification rate but will increase the mole fraction of N2O. The effect of NO 3 - concentration on the mole fraction of N2O is enhanced at low pH. Manipulating the interaction between NO 3 - supply and soil pH offers the best hope for minimising N2O and N2 fluxes.  相似文献   

20.
We studied nitrous oxide (N2O) emissions every growing season (April to October) for 6 years (19952000), in a Gray Lowland soil cultivated with onions in central Hokkaido, Japan. Emission of N2O from the onion field ranged from 0.00 to 1.86 mgN m–2 h–1. The seasonal pattern of N2O emission was the same for 6 years. The largest N2O emissions appeared near harvesting in August to October, and not, as might be expected, just after fertilization in May. The seasonal patterns of soil nitrate (NO3 ) and, ammonium (NH4 +) levels and the ratio of N2O to NO emission indicated that the main process of N2O production after fertilization was nitrification, and the main process of N2O production around harvest time was denitrification. N2O emission was strongly influenced by the drying–wetting process of the soil, as well as by the high soil water content. The annual N2O emission during the growing season ranged from 3.5 to 15.6 kgN ha–1. The annual nitrogen loss by N2O emission as a percentage of fertilizer-N ranged from 1.1 to 6.4%. About 70% of the annual N2O emission occurred near harvesting in August to October, and less than 20% occurred just after fertilization in May to July. High N2O fluxes around the harvesting stage and a high proportion of N2O emission to total fertilizer-N appeared to be probably a characteristic of the study area located in central Hokkaido, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号