首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer programs. The motor system is currently the primary focus, where signals are obtained during imagined motor responses. However, cognitive brain systems are also attractive candidates, in that they may be more amenable to conscious control, yielding better regulation of magnitude and duration of localized brain activity. We report on a proof of principle study for the potential use of a higher cognitive system for BCI, namely the working memory (WM) system. We show that mental calculation reliably activates the WM network as measured with functional magnetic resonance imaging (fMRI). Moreover, activity in the dorsolateral prefrontal cortex (DLPFC) indicates that this region is active for the duration of mental processing. This supports the notion that DLPFC can be activated, and remains active, at will. Further confirmation is obtained from a patient with an implanted electrode grid for diagnostic purposes, in that gamma power within DLPFC increases during mental calculation and remains elevated for the duration thereof. These results indicate that cortical regions involved in higher cognitive functions may serve as a readily self-controllable input for BCI applications. It also shows that fMRI is an effective tool for identifying function-specific foci in individual subjects for subsequent placement of cortical electrodes. The fact that electrocorticographic (ECoG) signal confirmed the functional localization of fMRI provides a strong argument for incorporating fMRI in BCI research.  相似文献   

2.
Brain-computer interfaces (BCIs) are known to suffer from spontaneous changes in the brain activity. If changes in the mental state of the user are reflected in the brain signals used for control, the behavior of a BCI is directly influenced by these states. We investigate the influence of a state of loss of control in a variant of Pacman on the performance of BCIs based on motor control. To study the effect a temporal loss of control has on the BCI performance, BCI classifiers were trained on electroencephalography (EEG) recorded during the normal control condition, and the classification performance on segments of EEG from the normal and loss of control condition was compared. Classifiers based on event-related desynchronization unexpectedly performed significantly better during the loss of control condition; for the event-related potential classifiers there was no significant difference in performance.  相似文献   

3.
Certain brain-computer interface (BCI) methods use intrinsic signals from the motor cortex to control neuroprosthetic devices. The organization of the motor pathways in those populations likely to use neuroprosthetic devices, therefore, needs to be determined; there is evidence that following disease or injury the representation of the body in the motor cortex may change. In this study, functional MRI measures of somatotopy following spinal cord injury (SCI) showed evidence of changes in limb representations in the motor cortex. Subjects with chronic SCI had unusual cortical patterns of activity when attempting to move limbs below their injury; amputees showed a more normal somatotopy. The functional reorganization may affect optimal implanted electrode placements for invasive BCI methods for these different populations  相似文献   

4.
The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.  相似文献   

5.
This paper proposes the development and experimental tests of a self-paced asynchronous brain-computer interfacing (BCI) system that detects movement related cortical potentials (MRCPs) produced during motor imagination of ankle dorsiflexion and triggers peripheral electrical stimulations timed with the occurrence of MRCPs to induce corticospinal plasticity. MRCPs were detected online from EEG signals in eight healthy subjects with a true positive rate (TPR) of 67.15 ± 7.87% and false positive rate (FPR) of 22.05 ±9.07%. The excitability of the cortical projection to the target muscle (tibialis anterior) was assessed before and after the intervention through motor evoked potentials (MEP) using transcranial magnetic stimulation (TMS). The peak of the evoked potential significantly (P=0.02) increased after the BCI intervention by 53 ± 43% (relative to preintervention measure), although the spinal excitability (tested by stretch reflexes) did not change. These results demonstrate for the first time that it is possible to alter the corticospinal projections to the tibialis anterior muscle by using an asynchronous BCI system based on online motor imagination that triggered peripheral stimulation. This type of repetitive proprioceptive feedback training based on self-generated brain signal decoding may be a requirement for purposeful skill acquisition in intact humans and in the rehabilitation of persons with brain damage.  相似文献   

6.
Most current brain-computer interface (BCI) systems for humans use electroencephalographic activity recorded from the scalp, and may be limited in many ways. Electrocorticography (ECoG) is believed to be a minimally-invasive alternative to electroencephalogram (EEG) for BCI systems, yielding superior signal characteristics that could allow rapid user training and faster communication rates. In addition, our preliminary results suggest that brain regions other than the sensorimotor cortex, such as auditory cortex, may be trained to control a BCI system using similar methods as those used to train motor regions of the brain. This could prove to be vital for users who have neurological disease, head trauma, or other conditions precluding the use of sensorimotor cortex for BCI control.  相似文献   

7.
Brain-computer interfaces (BCIs) involve two coupled adapting systems-the human subject and the computer. In developing our BCI, our goal was to minimize the need for subject training and to impose the major learning load on the computer. To this end, we use behavioral paradigms that exploit single-trial EEG potentials preceding voluntary finger movements. Here, we report recent results on the basic physiology of such premovement event-related potentials (ERP). 1) We predict the laterality of imminent left- versus right-hand finger movements in a natural keyboard typing condition and demonstrate that a single-trial classification based on the lateralized Bereitschaftspotential (BP) achieves good accuracies even at a pace as fast as 2 taps/s. Results for four out of eight subjects reached a peak information transfer rate of more than 15 b/min; the four other subjects reached 6-10 b/min. 2) We detect cerebral error potentials from single false-response trials in a forced-choice task, reflecting the subject's recognition of an erroneous response. Based on a specifically tailored classification procedure that limits the rate of false positives at, e.g., 2%, the algorithm manages to detect 85% of error trials in seven out of eight subjects. Thus, concatenating a primary single-trial BP-paradigm involving finger classification feedback with such secondary error detection could serve as an efficient online confirmation/correction tool for improvement of bit rates in a future BCI setting. As the present variant of the Berlin BCI is designed to achieve fast classifications in normally behaving subjects, it opens a new perspective for assistance of action control in time-critical behavioral contexts; the potential transfer to paralyzed patients will require further study.  相似文献   

8.
This study aims to propose an effective and practical paradigm for a brain-computer interface (BCI)-based 2-D virtual wheelchair control. The paradigm was based on the multi-class discrimination of spatiotemporally distinguishable phenomenon of event-related desynchronization/synchronization (ERD/ERS) in electroencephalogram signals associated with motor execution/imagery of right/left hand movement. Comparing with traditional method using ERD only, where bilateral ERDs appear during left/right hand mental tasks, the 2-D control exhibited high accuracy within a short time, as incorporating ERS into the paradigm hypothetically enhanced the spatiotemoral feature contrast of ERS versus ERD. We also expected users to experience ease of control by including a noncontrol state. In this study, the control command was sent discretely whereas the virtual wheelchair was moving continuously. We tested five healthy subjects in a single visit with two sessions, i.e., motor execution and motor imagery. Each session included a 20 min calibration and two sets of games that were less than 30 min. Average target hit rate was as high as 98.4% with motor imagery. Every subject achieved 100% hit rate in the second set of wheelchair control games. The average time to hit a target 10 m away was about 59 s, with 39 s for the best set. The superior control performance in subjects without intensive BCI training suggested a practical wheelchair control paradigm for BCI users.  相似文献   

9.
The ability to control electroencephalographic rhythms and to map those changes to the actuation of mechanical devices provides the basis for an assistive brain-computer interface (BCI). In this study, we investigate the ability of subjects to manipulate the sensorimotor mu rhythm (8-12-Hz oscillations recorded over the motor cortex) in the context of a rich visual representation of the feedback signal. Four subjects were trained for approximately 10 h over the course of five weeks to produce similar or differential mu activity over the two hemispheres in order to control left or right movement in a three-dimensional video game. Analysis of the data showed a steep learning curve for producing differential mu activity during the first six training sessions and leveling off during the final four sessions. In contrast, similar mu activity was easily obtained and maintained throughout all the training sessions. The results suggest that an intentional BCI based on a binary signal is possible. During a realistic, interactive, and motivationally engaging task, subjects learned to control levels of mu activity faster when it involves similar activity in both hemispheres. This suggests that while individual control of each hemisphere is possible, it requires more learning time.  相似文献   

10.
Electrocorticography (ECoG) has been demonstrated to be an effective modality as a platform for brain-computer interfaces (BCIs). Through our experience with ten subjects, we further demonstrate evidence to support the power and flexibility of this signal for BCI usage. In a subset of four patients, closed-loop BCI experiments were attempted with the patient receiving online feedback that consisted of one-dimensional cursor movement controlled by ECoG features that had shown correlation with various real and imagined motor and speech tasks. All four achieved control, with final target accuracies between 73%-100%. We assess the methods for achieving control and the manner in which enhancing online control can be accomplished by rescreening during online tasks. Additionally, we assess the relevant issues of the current experimental paradigm in light of their clinical constraints.  相似文献   

11.
Implantable devices that interact directly with the human nervous system have been gaining acceptance in the field of medicine since the 1960's. More recently, as is noted by the FDA approval of a deep brain stimulator for movement disorders, interest has shifted toward direct communication with the central nervous system (CNS). Deep brain stimulation (DBS) can have a remarkable effect on the lives of those with certain types of disabilities such as Parkinson's disease, Essential Tremor, and dystonia. To correct for many of the motor impairments not treatable by DBS (e.g. quadriplegia), it would be desirable to extract from the CNS a control signal for movement. A direct interface with motor cortical neurons could provide an optimal signal for restoring movement. In order to accomplish this, a real-time conversion of simultaneously recorded neural activity to an online command for movement is required. A system has been established to isolate the cellular activity of a group of motor neurons and interpret their movement-related information with a minimal delay. The real-time interpretation of cortical activity on a millisecond time scale provides an integral first step in the development of a direct brain-computer interface (BCI).  相似文献   

12.
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.  相似文献   

13.
The Wadsworth electroencephalogram (EEG)-based brain-computer interface (BCI) uses amplitude in mu or beta frequency bands over sensorimotor cortex to control cursor movement. Trained users can move the cursor in one or two dimensions. The primary goal of this research is to provide a new communication and control option for people with severe motor disabilities. Currently, cursor movements in each dimension are determined 10 times/s by an empirically derived linear function of one or two EEG features (i.e., spectral bands from different electrode locations). This study used offline analysis of data collected during system operation to explore methods for improving the accuracy of cursor movement. The data were gathered while users selected among three possible targets by controlling vertical [i.e., one-dimensional (1-D)] cursor movement. The three methods analyzed differ in the dimensionality of the cursor movement [1-D versus two-dimensional (2-D)] and in the type of the underlying function (linear versus nonlinear). We addressed two questions: Which method is best for classification (i.e., to determine from the EEG which target the user wants to hit)? How does the number of EEG features affect the performance of each method? All methods reached their optimal performance with 10-20 features. In offline simulation, the 2-D linear method and the 1-D nonlinear method improved performance significantly over the 1-D linear method. The 1-D linear method did not do so. These offline results suggest that the 1-D nonlinear or the 2-D linear cursor function will improve online operation of the BCI system.  相似文献   

14.
An improved P300-based brain-computer interface.   总被引:7,自引:0,他引:7  
A brain-computer interface (BCI) is a system for direct communication between brain and computer. The BCI developed in this work is based on a BCI described by Farwell and Donchin in 1988, which allows a subject to communicate one of 36 symbols presented on a 6 x 6 matrix. The system exploits the P300 component of event-related brain potentials (ERP) as a medium for communication. The processing methods distinguish this work from Donchin's work. In this work, independent component analysis (ICA) was used to separate the P300 source from the background noise. A matched filter was used together with averaging and threshold techniques for detecting the existence of P300s. The processing method was evaluated offline on data recorded from six healthy subjects. The method achieved a communication rate of 5.45 symbols/min with an accuracy of 92.1% compared to 4.8 symbols/min with an accuracy of 90% in Donchin's work. The online interface was tested with the same six subjects. The average communication rate achieved was 4.5 symbols/min with an accuracy of 79.5 % as apposed to the 4.8 symbols/min with an accuracy of 56 % in Donchin's work. The presented BCI achieves excellent performance compared to other existing BCIs, and allows a reasonable communication rate, while maintaining a low error rate.  相似文献   

15.
This paper summarizes the brain-computer interface (BCI)-related research being conducted at Aalborg University. Namely, an online synchronized BCI system using steady-state visual evoked potentials, and investigations on cortical modulation of movement-related parameters are presented.  相似文献   

16.
Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.  相似文献   

17.
Brain-computer interface research at the Wadsworth Center.   总被引:23,自引:0,他引:23  
Studies at the Wadsworth Center over the past 14 years have shown that people with or without motor disabilities can learn to control the amplitude of mu or beta rhythms in electroencephalographic (EEG) activity recorded from the scalp over sensorimotor cortex and can use that control to move a cursor on a computer screen in one or two dimensions. This EEG-based brain-computer interface (BCI) could provide a new augmentative communication technology for those who are totally paralyzed or have other severe motor impairments. Present research focuses on improving the speed and accuracy of BCI communication.  相似文献   

18.
The Wadsworth BCI Research and Development Program: at home with BCI.   总被引:1,自引:0,他引:1  
The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive, electroencephalography (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. We have also improved P300-based BCI operation. We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the complexity of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people's homes.  相似文献   

19.
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.  相似文献   

20.
System calibration and user training are essential for operating motor imagery based brain-computer interface (BCI) systems. These steps are often unintuitive and tedious for the user, and do not necessarily lead to a satisfactory level of control. We present an Adaptive BCI framework that provides feedback after only minutes of autocalibration in a two-class BCI setup. During operation, the system recurrently reselects only one out of six predefined logarithmic bandpower features (10-13 and 16-24 Hz from Laplacian derivations over C3, Cz, and C4), specifically, the feature that exhibits maximum discriminability. The system then retrains a linear discriminant analysis classifier on all available data and updates the online paradigm with the new model. Every retraining step is preceded by an online outlier rejection. Operating the system requires no engineering knowledge other than connecting the user and starting the system. In a supporting study, ten out of twelve novice users reached a criterion level of above 70% accuracy in one to three sessions (10-80 min online time) of training, with a median accuracy of 80.2 ± 11.3% in the last session. We consider the presented system a positive first step towards fully autocalibrating motor imagery BCIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号