首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
在固体超强酸SO4^2-/ZrO2基础上添加Al2O3,利用Al2O3与ZrO:的相互作用,制备了复合氧化物固体超强酸SO4^2-/ZrO2-Al2O3,并通过XRD、XPS、FTIR等实验技术对催化剂的体相结构、表面性质及其对正丁烷异构化反应的催化活性进行了研究。结果表明,Al2O3的引入稳定了四方晶相的ZrO2,抑制了ZrO2由四方晶相向单斜晶相的转变,使催化剂活性显著提高,Al2O3含量为1.5%的样品异丁烷最高收率达31.7%,选择性达65.5%。  相似文献   

2.
介绍了复合固体超强酸催化剂SO4^2-/ZrO2-Al2O3-V2O5的制备方法,用红外光谱、XRD、DSC—TGA、BET等多种方法对制备的催化剂进行表征。考察了催化剂制备条件如晶化温度、偏钒酸铵溶液浸渍前后焙烧与否以及V2O5的引入对催化剂活性的影响。结果表明,在晶化温度-10℃、偏钒酸铵溶液浸渍前后分别焙烧后制备的SO4^2-/ZrO2-Al2O3-V2O5催化剂具有最强的酸性和催化活性,用于乙酸正丁酯合成时酯化率达98.5%,并且有较高的稳定性。  相似文献   

3.
SO42-/ZrO2型固体超强酸催化剂改性制备   总被引:3,自引:0,他引:3  
综述了近年来国内外SO42-/ZrO2型固体超强酸催化剂的改性制备,其制备方法包括共沉淀法、溶胶-凝胶法、浸渍-沉淀法,讨论了催化剂组分及制备工艺条件对催化活性的影响.  相似文献   

4.
以纳米稀土复合固体超强酸SO4^2-/ZrO2-La2O3为催化剂,氯乙酸与乙醇为原料合成氯乙酸乙酯。探讨了醇酸摩尔比、催化剂用量、环己烷用量、反应时间等因素对酯化率的影响。试验结果表明,纳米稀土复合固体超强酸SO4^2-/ZrO2-La2O3是合成氯乙酸乙酯的良好催化剂,其最适宜的反应条件:氯乙酸0.10mol,醇酸摩尔比3.0:1,催化剂用量1.0g,环己烷用量15mL,回流分水反应2.0h。在此条件下,氯乙酸乙酯酯化率可达94.3%。  相似文献   

5.
MxOy/SO4^2—类固体超强酸的制备方法   总被引:8,自引:0,他引:8  
介绍MxOy/SO4^2-类强固体酸的制备方法,包括沉淀-硫酸化法,金属盐热分解法,气相浸渍法,溶胶-凝胶法,中孔催化剂的制备方法以及制备多组分催化剂的共沉淀-硫酸化法。  相似文献   

6.
制备了复合氧化物固体超强酸催化剂Pt-SO4^2-/ZrO2-Al2O3,通过XRD、XPS、SEM、FT-IR等手段研究了其结构、表面性质及其对正丁烷异构化反应的催化活性。结果表明,适量的Al2O3稳定T四方品相的ZrO2,抑制了ZrO2由四方晶相向单斜晶相的转变。掺杂Pt提高了正丁烷异构化反应的催化活性。采用W(Al)=1.5%的催化剂,异丁烷最高收率达37%,选择性达70%。  相似文献   

7.
TiO2/SO4^2—催化合成异戊酸异戊酯的研究   总被引:1,自引:0,他引:1  
介绍了一种利用超强酸TiO2/SO4^2-催化合成异戊酸异戊酯的新工艺,研究了固体超强酸催化剂用量、酸醇摩尔比、反应时间和反应温度对异戊酸转化率的影响。结果表明:此法催化剂用量少、催化活性高、反应时间较短、异戊酸转化率高、工艺简单、在一定条件下催化剂可以重复使用多次。通过实验确定了最佳工艺条件:催化剂用量为反应物质量的5%,醇酸摩尔比为1:1.5,反应温度在110-20℃,反应时间为3h。此条件下异戊酸转化率达96.9%。  相似文献   

8.
采用沉淀-浸渍法制备了SO_4~(2-)/ZrO_2型固体超强酸,采用FTIR法、Hammett指示剂法及碱滴定法对其进行了表征,考察了浸渍液浓度、焙烧温度及焙烧时间对SO_4~(2-)/ZrO_2酸强度、酸量的影响并在单因素研究结果基础上,采用相应面法优化分析了影响表面酸量的制备条件。研究结果表明,SO_4~(2-)/ZrO_2的最佳制备条件为:浸渍硫酸浓度1.0mol/L、焙烧温度550℃、焙烧时间4h,此时超强固体酸酸量可达1.83mmol·g~(-1)。  相似文献   

9.
综述了国内外固体超强酸的制备方法,制备过程中各影响因素对催化剂性能的影响,固体超强酸的改性,表征及最新的应用领域。并对其发展前景进行了展望。  相似文献   

10.
SO2-4/ZrO2类固体超强酸的研究进展   总被引:2,自引:0,他引:2  
在硫酸促进氧化物型固体超强酸催化剂中,SO2-4/ZrO2催化剂具有酸强度高、制备容易等优点而受到广泛关注.近二十年来,有关这类超强酸催化剂的研究一直是催化学科的热点研究课题.大量的研究工作集中在催化剂的制备方法、酸性及结构表征、催化剂的改性研究及催化作用等方面.本文主要介绍近年来国内外在SO2-4/ZrO2类固体超强酸在上述方面的研究进展.  相似文献   

11.
通过引入K的方法调节Beta分子筛的酸性,考察了K负载量对Beta分子筛酸性的影响。制备了Pt/Beta、Pt/SO42-/ZrO2 与Pt/WO3/ZrO2 3种不同类型的催化剂,考察了它们的正己烷异构化催化活性及酸性与孔道结构对其催化活性的影响。结果表明,催化剂的异构化催化活性与其酸强度和酸量有关,其中酸强度对异构化活的影响更明显。而异构体产物的分布可能与催化剂的孔道结构及正己烷转化率有关,而与催化剂酸性无直接关联。具有合适孔径的催化剂对多支链烷烃的生成更有利,异构化反应可能是受动力学限制的择形反应。  相似文献   

12.
SO42-/ZrO2固体超强酸催化剂研究进展   总被引:2,自引:0,他引:2  
综述了制备方法对SO_4~(2-)/ZrO_2固体超强酸性质的影响,并对SO_4~(2-)/ZrO_2型超强酸的酸强度测定及其结构表征进行了讨论。  相似文献   

13.
采用挤条成型法制备Pt/SO42-/ZrO2(PtSZ) 催化剂,考察黏结剂种类、黏结剂含量以及黏结剂引入方式对PtSZ催化剂异构化性能和机械强度的影响,并用XRD和TG手段对催化剂的晶相和硫含量进行表征。结果表明:对于Zr(OH)4粉末先硫酸化后加黏结剂制备的催化剂,以拟薄水铝石作为黏结剂制备的Pt/SO42-/ZrO2-Al2O3 [PtSZA(a)]催化剂较硅溶胶和铝溶胶为黏结剂制备的催化剂具有更高的异构化活性和机械强度;随着Al2O3质量分数从5%提高到30%,PtSZA(a)的异构化活性明显降低;对于Zr(OH)4粉末先加拟薄水铝石后硫酸化制备的Pt/SO42-/ZrO2-Al2O3 [PtSZA(b)]催化剂,黏结剂的质量分数提高至20%时,异构化活性基本保持不变,进一步增加Al2O3质量分数至30%,异构化活性仅仅表现出轻微下降;无论采用哪种方式引入拟薄水铝石,催化剂上硫含量和机械强度均随Al含量的增加而提高,采用先加拟薄水铝石黏结剂后硫酸化的方法制备的PtSZA(b)催化剂同时具有良好的异构化性能和高的机械强度。  相似文献   

14.
王知彩  张红玲 《石油化工》2006,35(5):483-487
利用沉淀-浸渍法制备了SO2-4/ZrO2-TiO2固体酸催化剂(简称SO2-4/ZrO2-TiO2催化剂),考察了SO2-4/ZrO2-TiO2催化剂的制备条件对苯与1-十二烯烷基化反应的影响,并通过红外光谱、X射线衍射及BET比表面积测定对SO2-4/ZrO2-TiO2催化剂结构进行了初步表征.实验结果表明,SO2-4/ZrO2-TiO2催化剂具有良好的催化活性;适当的TiO2含量、焙烧温度、焙烧时间和浸渍液硫酸溶液的浓度能提高SO2-4/ZrO2-TiO2催化剂的中强酸中心含量,有利于提高直链十二烷基苯(LAB)和2-十二烷基苯(2-LAB)的选择性.优化的SO2-4/ZrO2-TiO2催化剂制备条件为n(Zr)n(Ti)=1.50、焙烧温度500℃、焙烧时间3.0 h、硫酸溶液的浓度2.0 mol/L、室温陈化.在此条件下,1-十二烯的转化率达到99.5%,LAB及2-LAB选择性分别为92.2%和89.3%.  相似文献   

15.
SO42-/Fe2O3-ZrO2-La2O3固体超强酸催化剂及其催化合成缩酮   总被引:3,自引:0,他引:3  
用ZrO2 和La2 O3 对固体超强酸催化剂SO42 -/Fe2 O3 进行改性 ,并将改性催化剂用于以新戊二醇和异丁基氯代苯丙酮为原料催化合成布洛芬药物中间体———缩酮。催化剂的最佳制备条件为 :c(H2 SO4) =0 2 5mol/L ,焙烧温度 5 0 0℃。缩合反应的最佳条件为 :催化剂用量 (质量分数 ) 1 5 % ,n(新戊二醇 ) :n(异丁基氯代苯丙酮 ) =2 5∶1。催化剂的酸强度可达到H0 ≤ - 14 5 2 ,比表面积可达 12 4 8m2 /g以上。催化剂不仅具有很高的催化活性 ,而且重复使用性能良好 ,可回收再生使用。  相似文献   

16.
概述了SO42-/ZrO2催化剂的制备方法,介绍了SO42-/ZrO2催化剂改性研究进展和SO42-/ZrO2类催化剂表征方法,综述了SO42-/ZrO2类催化剂对烷烃异构化的催化作用,并在此基础上对SO42-/ZrO2催化剂研究发展方向进行了展望。  相似文献   

17.
采用“沉淀-浸渍”法制备SO42-/ZrO2-Al2O3催化剂,在常压、200 ℃的反应条件下,通过改变载气类型和数量,在固定床微型反应评价装置上考察了载气气氛对SO42-/ZrO2-Al2O3催化正丁烷异构化反应性能的影响。实验结果表明,惰性的氮气仅仅起到稀释原料和中间产物浓度的作用;而氢气在该反应中是非惰性的,除稀释作用外,还与催化剂发生相互作用,既能与正丁烷分子在活性中心上发生竞争吸附,还能提高中间物种和产物分子从催化剂表面上脱附下来的能力,从而减缓催化剂的失活速率。其中,与催化剂的相互作用是其提高催化剂稳定性的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号