首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以间位型芳纶/N,N-二甲基乙酰胺(PMIA/DMAC)为纺丝液,采用静电纺丝技术成功制备出PMIA纳米纤维膜,采用单因素变量法探讨了电纺工艺对PMIA纳米纤维形态的影响,并通过SEM图像及直径分布获得了电纺PMIA的较佳工艺参数为:纺丝液质量分数14%,电压25 kV,进液速率0.2 mL/h,接收距离16 cm.采用红外、TG测试手段表征了PMIA纳米纤维膜的结构和热稳定性能.结果表明:PMIA纳米纤维膜的玻璃化转变和热分解温度分别为273℃和431℃,具有着良好的热稳定性能.  相似文献   

2.
以聚四氟乙烯(PTFE)乳液和聚乙烯醇(PVA)为原料,用离心纺丝法制备出PTFE/PVA复合纤维膜前驱体,再通过高温烧结成形,制得一系列PTFE/PVA复合微/纳米纤维膜。研究了共混纺丝液中PVA的质量分数对纺丝效果的影响以及烧结温度、烧结时间的变化对复合纤维膜的结构和性能的影响,对纤维膜的微观形貌和结构进行了表征,并测试了纤维膜的水接触角、孔径、力学性能。结果表明:当纺丝液中PVA的质量分数为7%时,离心纺丝制得的纤维膜形态最好,粗细较为均匀,且直径分布范围较窄;经过高温烧结,复合纤维膜表面粗糙度均提高,疏水性增强,平均孔径和力学性能随着处理温度和处理时间的变化而波动;当烧结温度为370℃,烧结时间为20 min时,所得膜拉伸强度较高,且断裂伸长率也保持了相对较高的水平。  相似文献   

3.
用水热法合成的棒状纳米羟基磷灰石(nHA),引发ε-己内酯(ε-CL)开环聚合得到nHA-PCL复合材料。用静电纺丝法分别制备了聚己内酯(PCL)、nHA/PCL共混材料和nHA-PCL复合材料的3种电纺纤维膜。通过FT-IR、DSC、SEM、TGA和拉伸试验机表征了样品的结构、热性能和力学性能。结果表明:nHA-PCL电纺膜的结晶性能优于nHA/PCL材料,且热稳定性和力学性能都优于其他两种膜,nHA-PCL电纺膜的完全分解温度为420°C,拉伸强度和断裂伸长率分别达到28.2MPa和55.6%。3种膜的纤维直径均小于500 nm,nHA-PCL电纺膜的纤维表面比较粗糙。在人体仿生液中诱导矿化4 d后,nHA-PCL电纺膜纤维表面出现磷灰石沉积,而纯PCL和共混nHA/PCL电纺膜的纤维表面沉积的磷灰石很少,nHA-PCL复合电纺膜具有较好的诱导成骨性能。  相似文献   

4.
采用静电纺丝工艺制备了La(AA)3/TPU复合纳米纤维膜,研究了稀土配合物丙烯酸镧(La(AA)3)和热交联处理对热塑性聚氨酯(TPU)电纺膜结构和力学性能的影响.结果表明:掺入La(AA)3使TPU电纺膜纤维粗细均匀,并提高了电纺膜的力学性能.以DCP为交联剂并经过100℃热交联处理得到的La(AA)3/TPU电纺膜,其断裂伸长率最高可达302%,拉伸强度达到10.74 MPa,力学性能得到提升.  相似文献   

5.
采用静电纺丝技术制备聚丙烯腈(PAN)纳米纤维薄膜并对其进行空气过滤应用研究.探讨了纺丝溶液质量分数对纳米纤维微观形貌的影响,以及微观形貌与过滤效果之间的关系;研究了不同电纺时间对空气过滤效果的影响规律.研究结果表明,在其它工艺参数不变的情况下,纺丝液质量分数为6%时,所得纤维直径最小,为76.69nm;当静电纺时间由2h增加到5h,纳米纤维膜的孔径由0.35μm下降到0.247μm,其过滤效率相应地由87.6%提高到98.5%.  相似文献   

6.
利用电纺纳米纤维比表面积大的优势,将其应用于溶液调湿空调用电纺纳米纤维填料。采用静电纺丝技术制备聚酰胺6/柠檬酸(PA6/CA)复合纳米纤维膜,采用扫描电子显微镜(SEM)以及红外光谱(FT-IR)对纤维膜的表面形貌进行表征并解释柠檬酸改善PA6亲水性的机理,并测试其在不同温度、湿度下的吸湿性能。研究发现:膜的吸湿率随温度、湿度的升高而增大,最大可达到151.32%。  相似文献   

7.
电纺法制备壳聚糖/聚乙烯醇纳米纤维   总被引:1,自引:0,他引:1  
采用电纺法制备了壳聚糖/聚乙烯醇纳米纤维.考察了纺丝液配比和挤出速度对电纺纤维形貌的影响.结果表明当壳聚糖质量比小于70%时,共混溶液的可纺性较好,纤维直径随着壳聚糖含量的增大而减小;随着挤出速度的增大,电纺纤维直径有逐渐增大趋势,挤出速度为0.5~0.8 mL/h时得到的纤维形貌最佳.  相似文献   

8.
采用静电纺丝法制备了NiO纳米纤维,研究了纺丝液PVA浓度、纺丝电压、烧结温度等参数对NiO纳米纤维结构及微观形貌的影响,实验表明:当纺丝液PVA溶液为9%、纺丝电压为10 k V、烧结温度为700℃并保温4 h时,易获得形貌较好的NiO纳米纤维;制备的纳米纤维均为良好的一维形貌,直径为50~100 nm,平均长度为15μm.  相似文献   

9.
针对静电纺丝纳米纤维膜孔径偏大的问题,以聚偏氟乙烯(PVDF)为成膜聚合物,N,N-二甲基甲酰胺(DMF)/丙酮为混合溶剂制得纺丝液,采用静电纺丝技术制备PVDF纳米纤维膜,并研究聚合物浓度对纳米纤维膜孔结构及油水分离性能的影响。结果表明:增大纺丝液浓度会明显提高PVDF纳米纤维直径,使得纳米纤维直径分布变窄;当PVDF质量分数为14%时,所得PVDF纳米纤维膜具有较好的表面形貌和拉伸强度;油水分离结果表明,重油体系(二氯甲烷+水)通量最大达2 900.86 L/(m2·h),分离效率高达99.5%,高粘附油体系(玉米油+水)通量最小为32.98 L/(m2·h),分离效率仅有91.7%。在进一步的油包水乳液分离过程中,PVDF纳米纤维膜(M-3)具有的油水分离通量为7.9 L/(m2·h),分离效率高达97.6%。  相似文献   

10.
应用静电纺丝技术制备石墨/聚乙烯醇(PVA)纳米纤维,并将该复合纤维收集成无纺布薄膜;采用扫描电子显微镜(SEM)观察了复合纤维的微观形貌和结构,利用宽频质谱仪测试了纤维的导电性,利用万能强力机测试了不同纳米石墨含量纤维薄膜的拉伸力学性能,并利用X射线衍射仪(XRD)和热重分析仪(TG)测试了复合纤维的物相及热力学行为.结果表明:在聚乙烯醇质量分数为8%、石墨质量分数为4%时,所制备的纳米纤维膜导电性最高,且力学性能最好,与纯PVA相比,电导率和断裂强度分别提高1个数量级和127.33%;XRD测试结果表明,纳米石墨成功附着在PVA中;TG结果表明,石墨/PVA复合纤维初始分解温度相对于纯PVA变化不大,当样品质量保持率为40%时,4%石墨/PVA复合纤维较纯PVA相比,其分解温度提高了35℃.  相似文献   

11.
采用电纺法制备了壳聚糖/聚乙烯醇纳米纤维。考察了纺丝液配比和挤出速度对电纺纤维形貌的影响。结果表明:当壳聚糖质量比小于70%时,共混溶液的可纺性较好,纤维直径随着壳聚糖含量的增大而减小;随着挤出速度的增大,电纺纤维直径有逐渐增大趋势,挤出速度为0.5~0.8mL/h时得到的纤维形貌最佳。  相似文献   

12.
以苯乙烯-丁二烯-苯乙烯(SBS)和过氧化氢为原料,制备环氧基质量分数为10%的环氧化SBS(ESBS).利用红外光谱对ESBS结构进行表征.通过研究纺丝溶剂、纺丝液质量分数、外加电压和接收距离等对纤维形态结构的影响,制备纳米级到微米级ESBS电纺纤维.结果表明四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)混合溶剂是电纺ESBS的优良溶剂.在THF/DMF(质量比=3∶1)纺丝溶剂,纺丝液质量分数为10%,外加电压23kV及接收距离28cm时,所制得ESBS电纺纤维形态较好,纤维平均直径为302nm,最小直径可达70nm.  相似文献   

13.
聚酰亚胺因其具有出色的热稳定性和高的机械性能,以及良好的耐化学性和电性能而被广泛研究.利用静电纺丝技术制备了不同溶液浓度、纺丝距离纺和丝电压下的PI纳米纤维膜,得出了适宜的电纺参数,以期为进一步的研究应用提供一些有益的帮助.  相似文献   

14.
采用静电纺丝技术制备聚乙烯醇(PVA)/聚氧化乙烯(PEO)共混纳米纤维膜,测试共混纤维膜的拉伸力学性能,采用SEM观察其微观形貌和结构,利用TGA和DSC分析共混纤维膜的热学性能,考察PEO与PVA共混比例对纤维膜性能的影响.结果表明:PEO加入过多或过少对共混纤维膜结构均无明显改善,当PVA∶PEO质量比为5∶5时,所得纤维膜成丝性和成膜性最佳,膜中纤维线密度最小且粗细均匀;与纯纺纤维膜相比,不同共混比例PVA/PEO纤维膜的力学性能均有不同程度提升,当PVA与PEO质量比为7∶3时其断裂强度和断裂伸长率较纯PVA分别提高了66%和1 545.71%;PVA/PEO共混纤维膜的热稳定性优于纯PVA纤维膜,但PEO加入量的变化对共混纤维膜热学性能的影响较小.  相似文献   

15.
采用静电纺丝法制备了PA6/PVA复合纳米纤维.分析了不同质量比的PA6/PVA共混纺丝溶液的粘度、电导率、表面张力,并探讨其静电纺丝效果.采用扫描电镜、红外光谱、表面张力仪等对纳米纤维膜的形貌结构、成分相容性及亲水性能进行表征.结果表明,在纺丝电压为19kV、纺丝距离为20cm、丝液流量为0.2mL/h的条件下,共混溶液质量比为12%∶4%时的静电纺丝所得纤维具有良好的形貌,复合纳米纤维中PA6与PVA具有良好的相容性,并有效地克服了纯纺PVA纳米纤维在水溶液中出现的过度溶胀问题.  相似文献   

16.
为研究静电纺丝工艺对CS/PVP纳米纤维膜纤维形貌和直径的影响,以甲酸为溶剂配制质量分数为4%的CS溶液,以无水乙醇为溶剂配制质量分数为35%的PVP溶液,将PVP溶液与CS溶液按质量比90∶10混合,搅拌均匀作为纺丝液,调节纺丝电压、接受距离和纺丝速率分别制备纳米纤维,借助扫描电镜(SEM)观察制备的纳米纤维形貌.结果表明,在选定的纺丝工艺参数中,纺丝电压对纤维的形貌和直径影响较大,而纺丝速率和接受距离对纤维的形貌和直径影响相对较小;当纺丝电压为18 k V、接受距离为12 cm、纺丝速率为0.2 m L/h时,纤维形貌较好.  相似文献   

17.
利用多针头静电纺丝技术制备PVDF1/PVDF2双组份混纺纳米纤维膜,考察热轧温度对该电纺膜的表面形貌、机械性能及防水透湿性能的影响,以确定最合适的电纺膜热轧温度.采用Co-PA热熔网做热熔粘合剂,将此混纺电纺膜与防水织物进行层压复合,制备防水透湿织物,研究复合织物的抗剥离性能和防水透湿性能,并与PTFE拉伸膜层压复合织物进行对比.结果表明:在热轧温度为135℃、压力为0.3 k Pa、热轧时间为1 s条件下,双组分PVDF电纺膜拉伸断裂强度为24.22 MPa,耐静水压达到3 324 mm H2O,透湿量接近10 000 g/(m2·24 h);采用该电纺膜与Co-PA热熔胶、防水织物在135℃、0.3 k Pa条件下热轧15 s制备层压复合织物,其抗剥离强度(12.28 N/(2.5 cm))和透湿量(5 202 g/(m2·24 h))均优于PTFE拉伸膜层压织物,而耐静水压值(10 130 mm H2O)低于PTFE层压织物,但仍然可以达到商业化使用要求.  相似文献   

18.
为制备具有良好稳定性与灵敏度的温敏纳米纤维,将异丙基丙烯酰胺(N-isopropylacrylamide,NIPAm)与羟甲基丙烯酰胺(N-methylol acrylamide,NMA)通过自由基共聚合方法合成了聚异丙基丙烯酰胺-羟甲基丙烯酰胺共聚物P(NIPAm-co-NMA).并利用NMA的自交联能力和热处理,提高了共聚物P(NIPAmco-NMA)的交联度和低临界溶解温度区间的抗溶解能力.采用静电纺丝方法将共聚物P(NIPAm-co-NMA)制备成纳米纤维,研究了纺丝工艺条件对纤维形貌与直径的影响,以及热处理温度与时间对纳米纤维交联程度与形貌保持能量的影响.结果表明,共聚物P(NIPAm-co-NMA)的最佳纺丝参数为:聚合物质量分数为10%,纺丝电压为10 k V.共聚物P(NIPAm-co-NMA)纤维的最佳热交联温度为130℃,热处理时间为6 h,所获得纤维的交联度为82%,热交联后纤维可在低温水溶液中保持稳定,循环加热-冷却5次后其质量仍可保持原来的98%.  相似文献   

19.
用静电纺丝技术制备壳聚糖/聚乙烯醇复合纳米纤维膜,探讨了不同浓度、分子量及聚乙烯醇添加比例对纳米纤维膜成形的影响,运用扫描电镜对纳米纤维膜的形貌进行了分析,同时对其力学和亲水性能进行了测试.结果表明:当分子量为5×105g/mol、质量分数为4%、聚乙烯醇的添加比例为40%时,所制备复合纳米纤维膜具有良好的形貌,具有一定的力学性能,且呈疏水性.  相似文献   

20.
通过静电纺丝的方法制备以月桂酸和硬脂酸二元低共熔物(LA-SA)为固-液相变材料,聚丙烯腈(PAN)为基体的超细纤维。研究最佳静电纺PAN纤维的纺丝工艺参数,纺丝溶液中不同LA-SA含量对复合纤维的形貌结构影响。确定最佳静电纺PAN纳米纤维的工艺参数(纺丝电压15KV,接收距离20cm,纺丝液流速1ml/h)。SEM观察表明:随LA-SA含量的增加,复合纤维的平均直径逐渐增大;当复合纤维中LA-SA含量较高时,纤维表面变得不光滑,并呈现褶皱的形貌特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号