首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop a controller that deals with noise-corrupted training data and rule uncertainties for interconnected multi-input–multi-output (MIMO) non-affine nonlinear systems with unmeasured states, an interval type-2 fuzzy system is integrated with an observer-based hierarchical fuzzy neural controller (IT2HFNC) in this paper. Also, an H control technique and a strictly positive real Lyapunov (SPR-Lyapunov) design approach are employed for attenuating the influence of both external disturbances and fuzzy logic approximation error on the tracking of errors. Moreover, the proposed hierarchical fuzzy structure can greatly reduce the number of adjusted parameters of the IT2HFNC, and then, the problem of online computational burden can be solved. According to the design of the interval type-2 fuzzy neural network and H control technique, the IT2HFNN controller can improve its robustness to noise, uncertainties, approximation errors, and external disturbances. Simulation results are reported to show the performance of the proposed control system mode and algorithms.  相似文献   

2.
This paper proposes a type-2 self-organizing neural fuzzy system (T2SONFS) and its hardware implementation. The antecedent parts in each T2SONFS fuzzy rule are interval type-2 fuzzy sets, and the consequent part is of Mamdani type. Using interval type-2 fuzzy sets in T2SONFS enables it to be more robust than type-1 fuzzy systems. T2SONFS learning consists of structure and parameter identification. For structure identification, an online clustering algorithm is proposed to generate rules automatically and flexibly distribute them in the input space. For parameter identification, a rule-ordered Kalman filter algorithm is proposed to tune the consequent-part parameters. The learned T2SONFS is hardware implemented, and implementation techniques are proposed to simplify the complex computation process of a type-2 fuzzy system. The T2SONFS is applied to nonlinear system identification and truck backing control problems with clean and noisy training data. Comparisons between type-1 and type-2 neural fuzzy systems verify the learning ability and robustness of the T2SONFS. The learned T2SONFS is hardware implemented in a field-programmable gate array chip to verify functionality of the designed circuits.   相似文献   

3.
In the research domain of intelligent buildings and smart home, modeling and optimization of the thermal comfort and energy consumption are important issues. This paper presents a type-2 fuzzy method based data-driven strategy for the modeling and optimization of thermal comfort words and energy consumption. First, we propose a methodology to convert the interval survey data on thermal comfort words to the interval type-2 fuzzy sets (IT2 FSs) which can reflect the inter-personal and intra-personal uncertainties contained in the intervals. This data-driven strategy includes three steps: survey data collection and pre-processing, ambiguity-preserved conversion of the survey intervals to their representative type-1 fuzzy sets (T1 FSs), IT2 FS modeling. Then, using the IT2 FS models of thermal comfort words as antecedent parts, an evolving type-2 fuzzy model is constructed to reflect the online observed energy consumption data. Finally, a multiobjective optimization model is presented to recommend a reasonable temperature range that can give comfortable feeling while reducing energy consumption. The proposed method can be used to realize comfortable but energy-saving environment in smart home or intelligent buildings.  相似文献   

4.
Type-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type-2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.  相似文献   

5.
This paper first proposes a type-2 neural fuzzy system (NFS) learned through its type-1 counterpart (T2NFS-T1) and then implements the built IT2NFS-T1 in a field-programmable gate array (FPGA) chip. The antecedent part of each fuzzy rule in the T2NFS-T1 uses interval type-2 fuzzy sets, while the consequent part uses a Takagi-Sugeno-Kang (TSK) type with interval combination weights. The T2NFS-T1 uses a simplified type-reduction operation to reduce system training time and hardware implementation cost. Given a training data set, a TSK type-1 NFS is first learned through structure and parameter learning. The built type-1 fuzzy logic system (FLS) is then extended to a type-2 FLS, where highly overlapped type-1 fuzzy sets are merged into interval type-2 fuzzy sets to reduce the total number of fuzzy sets. Finally, the rule consequent and antecedent parameters in the T2NFS-T1 are tuned using a hybrid of the gradient descent and rule-ordered recursive least square (RLS) algorithms. Simulation results and comparisons with various type-1 and type-2 FLSs verify the effectiveness and efficiency of the T2NFS-T1 for system modeling and prediction problems. A new hardware circuit using both parallel-processing and pipeline techniques is proposed to implement the learned T2NFS-T1 in an FPGA chip. The T2NFS-T1 chip reduces the hardware implementation cost in comparison to other type-2 fuzzy chips.  相似文献   

6.
Robotic manipulators are a multi-input multi-output, dynamically coupled, highly time-varying, complex and highly nonlinear systems wherein the external disturbances, parameter variations, and random noise adversely affects the performance of the robotic system. Therefore, in order to deal with such complexities, however, an intriguing task for control researchers, these systems require an efficient and robust controller. In this paper, a novel application of genetic algorithms (GA) optimization approach to optimize the scaling factors of interval type-2 fuzzy proportional derivative plus integral (IT2FPD+I) controllers is proposed for 5-DOF redundant robot manipulator for trajectory tracking task. All five controllers' parameters are optimized simultaneously. Further, a procedure for selecting appropriate initial search space is also demonstrated. In order to make a fair comparison between different controllers, the tuning of each of the controllers' parameters is done with GA. This optimization technique uses the time domain optimal tuning while minimizing the fitness function as the sum of integral of multiplication of time with square error (ITSE) for each joint. To ascertain the effectiveness of IT2FPID controller, it is compared against type-1 fuzzy PID (T1FPID) and conventional PID controllers. Furthermore, robustness testing of developed IT2FPID controller for external disturbances, parameter variations, and random noise rejection is also investigated. Finally, the experimental study leads us to claim that our proposed controller can not only assure best trajectory tracking in joint and Cartesian space, but also improves the robustness of the systems for external disturbances, parameter variations, and random noise.  相似文献   

7.
In this paper, an interval type-2 fuzzy sliding-mode controller (IT2FSMC) is proposed for linear and nonlinear systems. The proposed IT2FSMC is a combination of the interval type-2 fuzzy logic control (IT2FLC) and the sliding-mode control (SMC) which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the interval type-2 fuzzy sliding-mode controller system. The design procedure of the IT2FSMC is explored in detail. A typical second order linear interval system with 50% parameter variations, an inverted pendulum with variation of pole characteristics, and a Duffing forced oscillation with uncertainty and disturbance are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1FLC), the IT2FLC, and the type-1 fuzzy sliding-mode controller (T1FSMC).  相似文献   

8.
The centroid of an interval type-2 fuzzy set (IT2 FS) provides a measure of the uncertainty of such a FS. Its calculation is very widely used in interval type-2 fuzzy logic systems. In this paper, we present properties about the centroid of an IT2 FS. We also illustrate many of the general results for a T2 fuzzy granule (FG) in order to develop some understanding about the uncertainty of the FG in terms of its vertical and horizontal dimensions. At present, the T2 FG is the only IT2 FS for which it is possible to obtain closed-form formulas for the centroid, and those formulas are in this paper.  相似文献   

9.
Uncertainty measures for interval type-2 fuzzy sets   总被引:1,自引:0,他引:1  
Dongrui Wu 《Information Sciences》2007,177(23):5378-5393
Fuzziness (entropy) is a commonly used measure of uncertainty for type-1 fuzzy sets. For interval type-2 fuzzy sets (IT2 FSs), centroid, cardinality, fuzziness, variance and skewness are all measures of uncertainties. The centroid of an IT2 FS has been defined by Karnik and Mendel. In this paper, the other four concepts are defined. All definitions use a Representation Theorem for IT2 FSs. Formulas for computing the cardinality, fuzziness, variance and skewness of an IT2 FS are derived. These definitions should be useful in IT2 fuzzy logic systems design using the principles of uncertainty, and in measuring the similarity between two IT2 FSs.  相似文献   

10.
This paper proposes a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for dynamic system processing. An RSEIT2FNN incorporates type-2 fuzzy sets in a recurrent neural fuzzy system in order to increase the noise resistance of a system. The antecedent parts in each recurrent fuzzy rule in the RSEIT2FNN are interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type with interval weights. The antecedent part of RSEIT2FNN forms a local internal feedback loop by feeding the rule firing strength of each rule back to itself. The TSK-type consequent part is a linear model of exogenous inputs. The RSEIT2FNN initially contains no rules; all rules are learned online via structure and parameter learning. The structure learning uses online type-2 fuzzy clustering. For the parameter learning, the consequent part parameters are tuned by a rule-ordered Kalman filter algorithm to improve learning performance. The antecedent type-2 fuzzy sets and internal feedback loop weights are learned by a gradient descent algorithm. The RSEIT2FNN is applied to simulations of dynamic system identifications and chaotic signal prediction under both noise-free and noisy conditions. Comparisons with type-1 recurrent fuzzy neural networks validate the performance of the RSEIT2FNN.  相似文献   

11.
This paper proposes the design of fuzzy controllers by ant colony optimization (ACO) incorporated with fuzzy-Q learning, called ACO-FQ, with reinforcements. For a fuzzy inference system, we partition the antecedent part a priori and then list all candidate consequent actions of the rules. In ACO-FQ, the tour of an ant is regarded as a combination of consequent actions selected from every rule. Searching for the best one among all combinations is partially based on pheromone trail. We assign to each candidate in the consequent part of the rule a corresponding Q-value. Update of the Q-value is based on fuzzy-Q learning. The best combination of consequent values of a fuzzy inference system is searched according to pheromone levels and Q-values. ACO-FQ is applied to three reinforcement fuzzy control problems: (1) water bath temperature control; (2) magnetic levitation control; and (3) truck backup control. Comparisons with other reinforcement fuzzy system design methods verify the performance of ACO-FQ.  相似文献   

12.
Interval Type-2 Fuzzy Logic Systems Made Simple   总被引:9,自引:0,他引:9  
To date, because of the computational complexity of using a general type-2 fuzzy set (T2 FS) in a T2 fuzzy logic system (FLS), most people only use an interval T2 FS, the result being an interval T2 FLS (IT2 FLS). Unfortunately, there is a heavy educational burden even to using an IT2 FLS. This burden has to do with first having to learn general T2 FS mathematics, and then specializing it to an IT2 FSs. In retrospect, we believe that requiring a person to use T2 FS mathematics represents a barrier to the use of an IT2 FLS. In this paper, we demonstrate that it is unnecessary to take the route from general T2 FS to IT2 FS, and that all of the results that are needed to implement an IT2 FLS can be obtained using T1 FS mathematics. As such, this paper is a novel tutorial that makes an IT2 FLS much more accessible to all readers of this journal. We can now develop an IT2 FLS in a much more straightforward way  相似文献   

13.
This paper proposes a self-evolving interval type-2 fuzzy neural network (SEIT2FNN) with online structure and parameter learning. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the fuzzy rules are of the Takagi–Sugeno–Kang (TSK) type. The initial rule base in the SEIT2FNN is empty, and the online clustering method is proposed to generate fuzzy rules that flexibly partition the input space. To avoid generating highly overlapping fuzzy sets in each input variable, an efficient fuzzy set reduction method is also proposed. This method independently determines whether a corresponding fuzzy set should be generated in each input variable when a new fuzzy rule is generated. For parameter learning, the consequent part parameters are tuned by the rule-ordered Kalman filter algorithm for high-accuracy learning performance. Detailed learning equations on applying the rule-ordered Kalman filter algorithm to the SEIT2FNN consequent part learning, with rules being generated online, are derived. The antecedent part parameters are learned by gradient descent algorithms. The SEIT2FNN is applied to simulations on nonlinear plant modeling, adaptive noise cancellation, and chaotic signal prediction. Comparisons with other type-1 and type-2 fuzzy systems in these examples verify the performance of the SEIT2FNN.   相似文献   

14.
15.
以两轮移动机器人(TWMR)为对象,针对机器人的非线性模型分别设计控制机器人平衡和位置的区间二型模糊逻辑控制器(IT2 FLC).针对区间二型模糊规则中参数难以设定的问题,通过改进的量子粒子群算法(LTQPSO)优化区间二型模糊集参数,并给出优化算法的流程图.针对区间二型模糊逻辑控制器和一型模糊逻辑控制器(T1 FLC)对平衡和位置的控制效果进行对比.进一步考虑质量不确定和位置扰动对两种控制器控制效果的影响.仿真结果表明,IT2 FLC可以有效地达到设定的控制目标,与T1 FLC相比,IT2 FLC拥有更好的处理不确定性的能力以及更强的抗扰动能力.  相似文献   

16.
17.
A method for designing optimal interval type-2 fuzzy logic controllers using evolutionary algorithms is presented in this paper. Interval type-2 fuzzy controllers can outperform conventional type-1 fuzzy controllers when the problem has a high degree of uncertainty. However, designing interval type-2 fuzzy controllers is more difficult because there are more parameters involved. In this paper, interval type-2 fuzzy systems are approximated with the average of two type-1 fuzzy systems, which has been shown to give good results in control if the type-1 fuzzy systems can be obtained appropriately. An evolutionary algorithm is applied to find the optimal interval type-2 fuzzy system as mentioned above. The human evolutionary model is applied for optimizing the interval type-2 fuzzy controller for a particular non-linear plant and results are compared against an optimal type-1 fuzzy controller. A comparative study of simulation results of the type-2 and type-1 fuzzy controllers, under different noise levels, is also presented. Simulation results show that interval type-2 fuzzy controllers obtained with the evolutionary algorithm outperform type-1 fuzzy controllers.  相似文献   

18.
In this paper, we investigate the fuzzy multi-attribute group decision making (FMAGDM) problems in which all the information provided by the decision makers (DMs) is expressed as the trapezoidal interval type-2 fuzzy sets (IT2 FS). We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two trapezoidal IT2 FS. Then, we develop two aggregation techniques called the trapezoidal interval type-2 fuzzy geometric Bonferroni mean (TIT2FGBM) operator and the trapezoidal interval type-2 fuzzy weighted geometric Bonferroni mean (TIT2FWGBM) operator. We study its properties and discuss its special cases. Based on the TIT2FWGBM operator and the possibility degree, the method of FMAGDM with trapezoidal interval type-2 fuzzy information is proposed. Finally, an illustrative example is given to verify the developed approaches and to demonstrate their practicality and effectiveness.  相似文献   

19.
This paper proposes a self-adaptive interval type-2 neural fuzzy network (SAIT2NFN) control system for the high-precision motion control of permanent magnet linear synchronous motor (PMLSM) drives. The antecedent parts in the SAIT2NFN use interval type-2 fuzzy sets to handle uncertainties in PMLSM drives, including payload variation, external disturbance, and sense noise. The SAIT2NFN is firstly trained to model the inverse dynamics of PMLSM through concurrent structure and parameter learning. The fuzzy rules in the SAIT2NFN can be generated automatically by using online clustering algorithm to obtain a suitable-sized network structure, and a back propagation is proposed to adjust all network parameters. Then, a robust SAIT2NFN inverse control system that consists of the SAIT2NFN and an error-feedback controller is proposed to control the PMLSM drive in a changing environment. Moreover, the Kalman filtering algorithm with a dead zone is derived using Lyapunov stability theorem for online fine-tuning all network parameters to guarantee the convergence of the SAIT2NFN. Experimental results show that the proposed SAIT2NFN control system achieves the best tracking performance in comparison with type-1 NFN control systems.  相似文献   

20.
针对设计高维模糊控制器过程中会遇到的“规则爆炸”问题,利用蚁群算法进行控制规则的过滤简化。为了用尽量少的规则得到尽可能好的控制效果,利用蚁群算法在饵决组合优化问题中的强大优势,在已有的完备规则中优选出若干条规则嵌人模糊控制器。采用带有时间窗口的蚁群算法去克服遗传算法优选模糊控制规则时可能产生的规则不连续的问题。该文还从遗传算法和蚁群算法工作机制的角度分析了对这两种算法加入约束条件的可操作性。以单级倒立摆控制系统为对象进行仿真研究,最后的仿真结果表明该文方法可以使模糊控制规则具有更好的简化效果和鲁棒性,并能具有好的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号