首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
为深入认识多孔介质发动机中均匀混合气的形成,用改进的KIVA-3V详细模拟了伞喷油雾与热多孔介质之间的相互作用.在KIVA-3V中增加了油滴碰撞热多孔介质壁面的碰撞模型、传热模型.为检测数值模型的合理性,在Senda等人的实验条件下进行了数值计算.油束碰壁后油滴和油蒸气分布的数值计算结果与实验结果吻合较好.在简化多孔介质结构的基础上和不同的环境压力及喷雾锥角时,模拟了伞喷油雾与热多孔介质的碰撞过程.计算结果表明,伞喷油雾的喷雾锥角及空间压力对油滴在多孔介质中的分布有着很大的影响,在多孔介质厚度一定时,通过调节这些参数,能够形成均匀混合气.  相似文献   

2.
隆瑞  马雷  刘伟 《水电能源科学》2011,29(11):205-208
以水为流动介质,在微通道内添加堆叠金属丝网多孔介质,采用局部非热平衡假设和双能量方程模型,分析了内插不同目数金属丝网的微通道在层流状况下的传热与阻力特性,并采用数值计算方法对微通道热沉进行了数值模拟。结果表明,在微通道内插入多孔介质能显著提高热沉的对流换热系数、降低加热面平均温度,但阻力增加较大,且当插入的金属丝网目数为100目时,微通道热沉的对流换热系数较大,与填充其他目数金属丝网相比阻力增加较小。  相似文献   

3.
The heat and mass transfer in an unsaturated wet cylindrical bed packed with quartz particles was investigated theoretically and experimentally for relatively low convective drying rates. The medium was dried by blowing dry air over the top of the porous bed which was insulated by impermeable, adiabatic material on the bottom and sides. Local thermodynamic equilibrium was assumed in the mathematical model describing the multi‐phase flow in the unsaturated porous medium using the energy and mass conservation equations for heat and mass transfer during the drying. The drying model included convection and capillary transport of the moisture, and convection and diffusion of the gas. The wet and dry regions were coupled with a dynamic boundary condition at the evaporation front. The numerical results indicated that the drying process could be divided into three periods: the initial temperature rise period, the constant drying rate period, and the reduced drying rate period. The numerical results agreed well with the experimental data, verifying that the mathematical model can evaluate the drying performance of porous media for low drying rates. ©2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(5): 290–312, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20205  相似文献   

4.
INTRODUCTIONHeattransferenllancen1enttechniquesplayaveryimportantroleintllermalcontroltechnologies1lsedwithnlicroelectronicchips,powerfullasermirrors,aerospacecraft,thermalnuclearfusion,etc.Itiswidelyrecognizedthattl1eheattransfercanbein-creasedbyil1creasingthesurfaceareaincontactwiththecoolant.TuckermanandPease[1,2]pointedoutthatforlaminarflowinconfinedchannels,theheattransfercoefficientisinverselyproportionaltothewidthofthechannelsincethelimitingNusseltnum-berisconsta11t.Theybuiltawate…  相似文献   

5.
This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid.  相似文献   

6.
Natural convection driven by combined thermal and solutal buoyant forces in a fluid-saturated porous enclosure was studied experimentally. An electrochemical method was employed to establish the concentration gradients. The inside temperature profiles and heat and mass transfer coefficients on the vertical walls were determined experimentally. The effects of dimensionless parameter Ra, Le, N on flow, heat, and mass transfer are discussed in detail. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 266–277, 1999  相似文献   

7.
This article presents an analytical study on magnetohydrodynamic micropolar nanofluid flow through parallel, coaxial discs filled with a porous medium with uniform blowing from the upper plate. Three different types of nanoparticles, namely copper, aluminum oxide, and titanium dioxide are considered with water and used as base fluids. The governing equations are solved via Differential Transformation Method. The validity of this method has been verified with the results of numerical solution (fourth‐order Runge‐Kutta scheme). The analytical investigation is carried out for different governing parameters. The results indicate that skin friction coefficient has a direct relationship with Hartmann number and the micropolar parameter. It is also found that Nusselt number is increased with increment in Prandtl number and Eckert number. Additionally, this analysis concluded that an increase in volume fraction of nanofluid increases the Nusselt number on the top plate and decreases it on the lower plate.  相似文献   

8.
Two-dimensional calculations were performed for combined convection heat transfer in a channel with two ribs attached to one wall, following a previous study on the forced convection case without buoyancy. The flow is heated from the surfaces of both ribs and the present study dealt with the two cases of buoyancy-assisted flow and buoyancy-opposing flow. The effect of Reynolds number, ReL, and modified Richardson number, Ri*, was examined keeping the space between ribs, σ, and blockage ratio, τ, constant (σ = 3.0, τ = 0.5). Increasing the magnitude of buoyancy, unsteady flows predicted by the present calculations are stabilized in both cases. Serious deterioration of Nusselt number on the second rib suddenly occurs in a certain range of Ri* due to the flow stabilization. This is because flow unsteadiness plays an important role for heat transfer enhancement as was described in a previous study. However, in buoyancy-assisted flow, a similar deterioration of Nusselt number also appears on the second rib even if flow remains steady. This is caused by the disappearance of a strong rotating flow which exists in the cavity between both ribs and keeps the fluid in the cavity cooler. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 379–394, 1999  相似文献   

9.
This paper presents the mixed convection heat and mass transfer near a vertical surface in a stratified porous medium using an integral method. The conservation equations that govern the problem are reduced to a system of coupled non‐linear ordinary differential equations, which is then reduced into a single algebraic equation using exponential profiles for the temperature and concentration. The results for heat and mass transfer rates in terms of Nusselt and Sherwood number are presented for a wide range of governing parameters like the buoyancy ratio (N), Lewis number (Le), flow driving parameter (Ra/Pe), in addition to both thermal and solutal parameters (S and R). The results indicate that the stratification effects have considerable influence on both the heat and mass transfer rates. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20300  相似文献   

10.
The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new composite porous solar wall with different porosity is proposed to reduce the disadvantageous effect. __________ Translated from Journal of Engineering Thermophysics, 2008, 29(2): 284–286 [译自: 工程热物理学报]  相似文献   

11.
This article models the transport mechanism of mass and heat energy under temperature and concentration gradients. Mathematical models in the form of partial differential equations based on conservation laws for fluid flow and transfer of heat and mass subjected to thermal diffusion and diffusion thermos, heat generation porous medium, and buoyancy forces are developed under boundary layer approximations. These models along with models of nanostructures are solved numerically using the shooting method with the Runge–Kutta method of order five. Convergent solutions are obtained and are used for parametric analysis regarding thermal enhancement of a working fluid having nanoparticles of CuO, Al2O3, and TiO2. Numerical experiments are performed and it is observed that the transport of heat is accelerated when the compositional gradient is increased. Similarly, a significant rise in the transport across concentration is noted when the temperature gradient is increased. The magnetohydrodynamic flow experienced retardation when the porous medium parameter and Hartmann number are increased. The temperature increased when the friction force produced heat and that heat is distributed to the particles of the fluid. Hence, viscous dissipation is responsible for widening the thermal boundary layer region.  相似文献   

12.
Based on classical analysis and conclusive comments about various kinds of drying models, a rigorously formulated and comprehensive theoretical model is established to describe heat and mass transfer during constant rate and falling rate periods in convective drying of porous materials. The concept of iterative correction is introduced, and a corresponding numerical method is developed for the moving boundary problem in numerical simulations of drying processes. The calculation results for the drying of bricks show that the model presented is more precise than other models. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 337–351, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号