首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
钼合金熔化焊接存在晶粒粗大、晶间偏析问题,导致接头力学性能差,采用激光束摆动和氮气合金化方法开展试验研究.结果表明,单独采用光束摆动措施后,焊缝区平均晶粒尺寸减小约28%,焊缝中心显微硬度从190?HV提高到200?HV,钼合金对接接头抗拉强度从29.83?MPa提高到130.03?MPa.单独采用氮气合金化(保护气体...  相似文献   

2.
In order to deduce the state of carbon and its interaction with titanium in the carburized molybdenum-titanium alloys (target titanium content: 0.1, 0.2, 0.5 and 1.0 mass%), changes of low-temperature fracture strength and ductility after heating in vacuum at 1773 K were investigated.

Bend tests were performed at temperatures from liquid nitrogen temperature to room temperature and yield strength, maximum strength and bend angle were calculated in each temperature. In this study the low-temperature fracture strength and ductility of a material were represented by the critical stress and the critical temperature, respectively. Fracture surfaces of the specimens failed at low temperatures were examined by using a scanning electron microscope and crack initiation and propagation characteristics were investigated. The results are summarized as follows.

1. (1) For the alloy with lower titanium content (e.g. Mo-0.1 mass%Ti alloy): the critical stress, the critical temperature and the fracture mode were almost unchanged after heating in vacuum. In this case it is deduced that carbon exists as free carbon and carbides at the grain boundaries. During heating, reduction of free carbon occurred by decarburizing, but it was compensated by the carbon produced by the resolution of carbides in a manner similar to pure molybdenum. Consequently there still remained enough carbon to strengthen the grain boundaries.
2. (2) For the alloy with higher titanium content (e.g. Mo-1.0 mass%Ti alloy): the critical stress remarkably decreased and the critical temperature increased after heating in vacuum. The fracture mode also changed from transgranular to intergranular. In this case it is deduced that carbon exists as free carbon both at the grain boundaries and at the interfaces between titanium-oxides and matrix. During heating, only the reduction of free carbon proceeded and consequently the grain boundaries became short of carbon.
  相似文献   

3.
采用粉末冶金技术制备了不同Si含量(0,0.1,0.3wt%Si)的Mo-Si合金板材,并在25,300,800和1200℃下进行了静拉伸试验,研究了试验温度对Mo-Si合金板材力学性能、断裂方式及微观组织的影响。结果表明:随试验温度升高,纯钼及Mo-Si合金板材强度明显下降,但延伸率以300℃为分界点呈现出先升后降的趋势。室温下Mo-Si合金的断裂方式为穿晶解理断裂,在300及800℃时主要为韧窝延性断裂,而1200℃时为沿晶断裂。对Mo-Si合金强化机制的分析表明,室温下的强化主要来源于弥散强化和固溶强化,而在高温时,固溶作用明显减弱,颗粒弥散和粗化晶粒为主要的强化手段。  相似文献   

4.
The effects of second phases on the fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated. The results show that the fracture mode can be generally described as ductile transgranular fracture in as-extruded condition and intergranular fracture in peak-aged condition. In as-extruded condition, the ductile transgranular fracture occurs by the formation and transgranular propagation of the microcrack from the broken primary phases. However, as the collaboration effects of precipitates inside grains and on the grain boundaries have the tendency to reduce the cohesive strength of the grain boundary, and make the grain boundaries the favorable path for crack propagation, the intergranular fracture occurs in peak-aged condition.  相似文献   

5.
The KIC of sintered Mo–La2O3 alloy and pure molybdenum was tested and the micro-structure was investigated by SEM, TEM and AES. The results show that the KIC of Mo–La2O3 alloy reaches 24.76 MPa m1/2, which is 2.5 times as much as that of pure Mo. The sintered Mo–La2O3 alloy and pure molybdenum have similar equiaxed grain structure. The AES analysis revealed that the same content of interstitial impurities exist on grain boundaries of Mo–La2O3 alloy and pure molybdenum. A toughening mechanism was proposed to be that large number of dislocations were pinned around La2O3 particles, shortening the efficient slip length and decreasing the dislocation pile-up on grain boundaries of Mo. The improvement of toughness of Mo–La2O3 alloy was attributed to the relief of stress concentration at the grain boundaries of Mo–La2O3 alloy and the weaker tendency to intergranular fracture on grain boundaries.  相似文献   

6.
Abstract

The influence of spot welding on the microstructure and fracture behaviour of an Al–6.6Mg alloy has been investigated. Results showed that dendrites were formed with porosity and cracks in the nugget. Grain boundary melting occurred in the heat affected zone and wide grain boundaries appeared. Spot welding increased the tendency towards intergranular fracture. Tensile shear fracture was mixed with dimples and intergranular fracture. Fatigue fracture was transgranular with striations at the surface. However, the alloy sheet without welding showed dimpled tensile fracture and fatigue fracture mixed with intergranular and transgranular fracture.  相似文献   

7.
Low alloy steels serving for a long time at high temperature, e.g., around 500 °C, are very sensitive to temper embrittlement due to segregation of various trace elements at prior austenite grain boundaries and/or carbide/matrix interfaces. This type of segregation in combination with various environmental effects can adversely affect the fracture resistance and fatigue crack propagation rate with subsequent change in fracture morphology of low alloy steels. This article describes the segregation behavior of various elements in 2.25Cr-1Mo pressure vessel steel investigated by AES, FEG-STEM, SEM, and EDS analyses. As confirmed by AES and FEG-STEM, phosphorus is found to be the main embrittling element for isothermal embrittlement. Sulfur and Mo segregation is only evident after longer embrittlement times. In the step-cooling embrittlement, phosphorus is still found to be the main embrittling element, but heavy segregation of sulfur in some isolated intergranular facets was also observed. For P segregation, a Mo-C-P interaction is observed, while sulfur segregation is attributed to site competition between sulfur and carbon atoms.  相似文献   

8.
The fracture behavior of a permanent mould casting Mg-8.57Gd-3.72Y-0.54Zr(mass fraction,%)(GW94) alloy was investigated under different thermal conditions,including as-cast,solution-treated,peak-aged,and over-aged states.Scanning electron microscopy(SEM) and optical microscopy(OM) were employed to examine the crack nucleation and fracture model.The results indicate that the GW94 alloy shows different behaviors of crack initiation and fracture under different thermal conditions. During tensile test at room temperature,the fracture model of the as-cast GW94 alloy is quasi-cleavage,while that of the solution-treated alloy is transgranular cleavage.It is a mixed pattern of transgranular and intergranular fracture for both the aged conditions.Large cavities formed at grain boundaries are observed in the peak-aged sample tested at 300℃,corresponding to the intergranular fracture.Localized plastic deformation at grain boundaries is also observed and corresponds to the high elongation at 300℃.  相似文献   

9.
The present study is aimed at improving the impact toughness of 5Mn-1Al-0.5Ti steel by incorporating ferrite-martensite dual phase microstructure by intercritical annealing. Although (8-12)Mn martensitic steels usually show very low impact toughness due to the occurrence of intergranular fracture, the martensitic structure of the present 5Mn-1Al-0.5Ti steel fails by transgranular cleavage fracture due to higher grain boundary strength than matrix strength incurred by reduced Mn content and segregation of Ti along grain boundaries. Nevertheless, it still shows very poor impact toughness at room temperature due to its coarse grain size. The application of intercritical annealing, i.e., formation of dual phase microstructure, is shown to significantly decrease ductile-to-brittle transition temperature (DBTT), with only a small degradation of tensile properties; however, microstructural examinations show that most of ferrite/martensite interfaces have a character of low angle boundaries and therefore such decrease in DBTT is not necessarily due to the formation of ferrite-martensite dual phase structure, but rather to the refinement of grain size by low temperature annealing.  相似文献   

10.
本文利用S4-10型Stereoscan扫描电镜拉伸试验装置,对阴极充氢的Johnson-Matthey纯铁的形变和断裂微观过程进行了动态观察。主要结果如下: 1.随着氢含量的增加(从5.4cm~3/100g增到31.0cm~3/100g),屈服应力略有增加,流变应力和断裂强度显著增加,而断裂应变明显降低。在氢含量高于18.7cm~3/100g以上时,下屈服点和Lüders带消失。 2.氢含量低于10cm~3/100g的试样,裂纹优先在晶内滑移面上萌生形核,沿着亚晶界向前扩展,断裂途径大都是与拉伸轴呈45°方向断开。而氢含量大于16cm~3/100g的试样,裂纹易在晶界上开裂,在晶内呈锯齿形向前扩展,与拉伸轴正交方向断开。 3.纯铁氢脆的主要特征是:(1)试样表面上滑移线的明显减少,(2)脆性微观断裂形态的形成和增多。这是由于固溶的氢原子降低塑性形变所致。  相似文献   

11.
Phosphorus is a very common trace element that can segregate at prior austenite grain boundaries and/or carbide/matrix interfaces of low alloy steels at high temperature (e.g., order of 500 °C) and adversely affect the fracture properties. This paper investigates segregation of P during reversible temper embrittlement (96 h at 520 °C) of quenched and fully tempered 2.25Cr-1Mo steel by Auger electron spectroscopy and describes the segregation mechanism. This paper also describes the effect of P segregation on fracture resistance and fracture mode of unembrittled steels, respectively, by fracture toughness testing over a temperature range of −196 °C to 20 °C and fractography in scanning electron microscopes. During temper embrittlement phosphorus segregation has been attributed due to the mechanism of “carbide rejection”. This segregation caused a reduction in fracture toughness values of the quenched and tempered steels at all test temperatures and an increase in the transition temperature. Phosphorus segregation also changed the brittle fracture micromechanism of quenched and fully tempered samples from one of transgranular cleavage to a mixed mode of fracture (transgranular cleavage and intergranular decohesion). The micromechanism of fracture at temperatures from the upper shelf, however, remained almost unchanged.  相似文献   

12.
The microstructures after various ageing treatments and their relation to the strength, fracture toughness, and corrosion behavior of an Al-Zn-Mg-Cu alloy pre-stretched plate were investigated. The results show that retrogression and reaging (RRA) treatment led to a combina- tion of high strength and stress corrosion cracking (SCC) resistance of the alloy. The TEM microstructure of the RRA-treated alloy is a dis- tribution of very fine precipitates in the aluminum matrix grains, similar to that obtained under T6 condition, and the distribution of coarse η MgZn2 precipitates on the grain boundaries similar to that obtained by T7 temper. SEM observations revealed that most of the intergranular fracture characteristics were present on the fracture surface of both the T6 and RRA-treated specimens. On the contrary, the fractographs of the T7 treated specimens mainly consisted of dimple-type ductile transgranular fracture with minor intergranular cracking.  相似文献   

13.
LOCALCHEMISTRYANDTHECOHESIVESTRENGTHOFGRAINBOUNDARIESINNi_3AlShanthiSubramanian;DavidMuller;JohnSilcoxandStephenL.Sass(Depart?..  相似文献   

14.
高氮奥氏体钢低温断裂途径与断口形貌   总被引:3,自引:0,他引:3  
刘世程  刘德义  戴雅康 《金属学报》2002,38(10):1042-1046
用扫描电子显微镜对18Cr-18Mn-0.7N高氮奥氏体钢低温断裂途径进行了观察。证实该钢低温脆断中裂纹既可穿晶扩展又可沿晶界和退火孪晶界扩展。仔细观察发现裂纹更容易在晶界和退火孪晶界形成并沿这些晶界扩展,对断面与侧面组织的双面观察表明,退火孪晶界断裂,沿晶断裂和穿晶断裂分别形成光滑平面状断裂刻面,光滑曲面状断裂刻面和粗糙不平的断裂刻面。  相似文献   

15.
采用电子能量损失谱(EELS)研究了不同商用钢铁材料的晶界,计算了晶界处和晶粒内铁原子的3d电子占据态密度,并将其和晶界性质以及材料的宏观断裂性能相联系.结果表明:当样品晶界处铁原子的3d电子占据态密度高于晶粒内时,晶界结合强度低于晶内,晶界表现出脆性,材料的冲击断裂方式主要为脆性的沿晶断裂;反之,如果晶界处铁原子的3d电子占有态密度与基体没有明显的差异,则晶界结合强度与晶内相当,晶界表现出韧性,材料的断裂方式主要为韧性的穿晶断裂.  相似文献   

16.
The fracture mechanism of deformation-aged Al-Li alloy was approached by investigatingthe influence of prior cold deformation on the precipitation kinetics as well as the behavioursof work hardening and fracture for Al-2.73Li alloy.The experimental results show that thework hardening rate and the strength are increased and the ductility is decreased by prior colddeformation.The decrease in ductility is mainly due to the cell dislocaton substructure distrib-uted inhomogeneously and the hardening of precipitate free zones at grain boundaries causedby prior cold deformation.The failure mode in the alloy is a mixed integranular andtransgranular one.The tendency of intergranular fracture is intensified through thedeformation-aging.The mechanisms of intergranular failure in the alloy are different undervarious deformation-aging treatments.  相似文献   

17.
A study was carried out to determine the effect of cerium addition on HAZ cracking susceptibility in cast alloy 718 welds. The cause of HAZ cracking was also investigated using commercial cast alloy 718 varying in grain size at three levels. The hot cracking test results for commercial cast alloy 718 indicated that the fine-grained alloy was less sensitive to HAZ cracking. Furthermore, cerium addition of up to 0.3 wt.% was found to have a beneficial effect in reducing HAZ cracking susceptibility. When cerium addition exceeds 0.3 wt%, HAZ cracking susceptibility increased further. The mechanism of HAZ cracking was found to be related to intergranular liquation caused by the eutectic melting of sulfur containing a laves cluster at the grain boundaries. The degree of grain boundary liquation in the fine-grained specimen was less than that of the coarse-grained specimen due to a decrease in the amount of laves cluster and sulfur segregation in it at the grain boundaries, which seems to be responsible for a reduction in hot cracking susceptibility in the fine-grained specimen. Microscopic observation suggested that the improved HAZ cracking susceptibility in cerium containing alloy could be attributed to a reduction in the amount of laves cluster and sulfur segregation in it at grain boundaries due to the grain size reduction and sulfur-scavenging effects of cerium.  相似文献   

18.
The influence of Fe on the microstructure and mechanical properties of P-doped Ni–Cr–Fe alloys has been investigated.Results showed that increasing Fe content refined the dendrite microstructure and enhanced the solubility of P in as-cast alloys. The change of microhardness in different dendrite regions was attributed to the segregation of P atoms in solid solution state, which had strengthening effects. Increasing Fe contents from 15.2 to 60.7 wt% reduced the yield strength and tensile strength but had little influence on the elongation of alloys. The stress rupture life of alloys after heat treatment decreased with the increment of Fe contents, and the failure fracture modes transferred from transgranular to intergranular fracture mode. The change of fracture modes was due to the weakness of grain boundaries caused by the increment of Fe.In addition, the precipitation of M_(23)C_6 was believed to be related to the segregation of P toward grain boundaries, which led to the fluctuation of carbon and chromium atoms near the grain boundaries in alloys with low Fe contents. Consequently, the increment of Fe decreased the strength of matrix and changed the existence of P atoms and the precipitates at grain boundaries.  相似文献   

19.
Pure Mo and Mo-Si alloys with different silicon content were fabricated by powder-metallurgical and thermo-mechanical processing. Tensile properties of the pure Mo and Mo-Si alloys were measured at room temperature and the fracture surface was analyzed after test. The results indicate that Si can effectively reduced the grain size and improve the yield strength of Mo-Si alloys. With the decrease in grain size, the dominant fracture morphology is changed from intergranular to transgranular. The strengthening mechanisms were discussed and the yield strength was analyzed described with respect to grain size, solid solution hardening and Mo3Si particle strengthening. Calculations show that the yield strength of Mo-Si alloys is governed by grain size.  相似文献   

20.
借助光学显微镜、扫描电镜和万能力学试验机研究元素铼对铱显微组织和力学性能的影响。结果表明,添加元素铼可以细化铱的晶粒,显著改善铱的显微组织。随着铼含量的增加,在固溶强化和细晶强化作用下,铱铼合金的屈服强度和抗拉强度呈现先上升后下降的趋势,当铼质量分数为7.0%时屈服强度和抗拉强度达到最大值为472.0和526.0 MPa;而在铱中添加铼以后,铱铼合金的延伸率先降后升,其中纯铱的延伸率最高为2.52%。室温下铱铼合金的断口呈脆性沿晶断裂和脆性穿晶断裂的混合断裂模式,加入元素铼后断口形貌中脆性穿晶断裂区域明显增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号