首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high temperature deformation behaviors of Ti-45Al-2Nb-1.5V-1Mo-Y alloy were investigated in the temperature range 1100–1250 °C and the strain rate range 0.001–1.0 s?1. The true stress-strain curves exhibit typical work hardening and flow softening features; The peak stress of current alloy decreases with increasing temperature and decreasing strain rate, which can be represented by a hyperbolic sine equation using the Zener-Hollomon parameter. Thanks to the additions of element Mo and V, and the resulting B2 phase, this alloy possesses a low activation energy value of 370 kJ/mol, as well as a wide processing window of temperature above 1150 °C and strain rate under 0.1 s?1. The deformed microstructure consists of dominated DRX areas plus several remnant lamellar colonies; the inhomogeneous deformation microstructure is ascribed to the anisotropic plastic flow of lamellar colonies. By TEM observation and EBSD analysis further, the deformation mechanism of current alloy is concluded as dislocation slip and mechanical twins.  相似文献   

2.
Isothermal compression of a Ti-5.6Al-4.8Sn-2.0Zr alloy was conducted on a Thermecmaster-Z simulator at the deformation temperatures ranging from 960 to 1060°C, the strain rates ranging from 0.001 to 10.0 s−1, and the maximum height reduction of 70.0%. In the two-phase region of the Ti-5.6Al-4.8Sn-2.0Zr alloy, the volume fraction of α phase decreases with an increase in deformation temperature, but the grain size has a slight variation with deformation temperature. The strain rate affects both morphologies and grain size of the α phase in the isothermal compression of the Ti-5.6Al-4.8Sn-2.0Zr alloy. The optimal height reduction also contributes to the small and well-distributed α phase in the isothermal compression of Ti-5.6Al-4.8Sn-2.0Zr alloy.  相似文献   

3.
The true stress-true strain curves of Ti-6Al-2Zr-1Mo-1V alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6Al-2Zr-1Mo-1V alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃  can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-1Mo-1V alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ•mol-1 and 390,kJ•mol-1, respectively, at 800   ℃ and at strain rate 8.3×10-4 s-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10-4 s-1 to 8.31×0-2 s-1.  相似文献   

4.
Isothermal compression testing of Ti-22Al-25Nb alloy was carried out at deformation temperatures between 940 and 1060 °C with strain rate between 0.001 and 10 s−1, and a height reduction of 50%. The hot deformation behavior of Ti-22Al-25Nb alloy was characterized based on an analysis of the stress-strain behavior, kinetics and the processing map, for obtaining optimum processing windows and achieving desired microstructures during hot working. The constitutive equation was established, which described the flow stress as a function of the strain rate and deformation temperature. The apparent activation energies were calculated to be 788.77 kJ/mol in the α2 + β/B2 + O phase region and 436.23 kJ/mol in the α2 + B2 phase region, respectively. Based on Dynamic Material Model and the Murty instability criterion, the processing map for the Ti-22Al-25Nb alloy was constructed for strain of 0.6. The map exhibits a stable domain for the temperature range of 940-1060 °C and strain rate range of 0.001-0.1 s−1 with two peaks in power dissipation of 51 and 56%, occurring at 940 °C/0.001 s−1 and 1060 °C/0.001 s−1, respectively. One is associated with lamellar globularization, and the other displays a phenomenon of recrystallization. Therefore, the desired processing condition of the Ti-22Al-25Nb alloy is 940 °C/0.001 s−1 in the α2 + β/B2 + O phase field. Moreover, the material also undergoes flow instabilities at strain rates higher than 1 s−1. This instability domain exhibits flow localization and adiabatic shear bands which should be avoided during hot processing in order to obtain satisfactory properties.  相似文献   

5.
本文系统地研究了粉末冶金态与铸态Ti-5553合金在温度为700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温不连续屈服行为和绝热温升效应,并对这两种同名义成分不同制备工艺的钛合金进行了对比研究。结果表明:两种合金不连续屈服的幅度均与应变速率呈正相关关系,并与温度呈近似负相关关系, 两种合金中出现的不连续屈服现象符合动态理论。在相同变形条件下,铸态合金中不连续屈服的幅度更大,其原因是相对于粉末冶金态合金,铸态合金中的起始位错密度低,这更有利于晶界处可动位错的突然增殖与扩展。两种合金在热变形中绝热温升的大小均随应变速率的升高而逐渐增大,并随着变形温度的升高而逐渐降低。在相同变形条件下,粉末冶金态合金的绝热温升效应相比与铸态合金较弱,这是因为粉末冶金态合金具有较低的变形抗力和较高的协调变形能力。  相似文献   

6.
Isothermal compression of Ti-6Al-4V alloy without and with hydrogenation content of 0.27 wt.% was carried out on Gleeble-1500D thermal simulation machine at deformation temperature between 760 and 1000 °C and strain rate from 0.001 to 1 s−1. The experimental results show that hydrogenation can decrease the deformation temperature or increase the strain rate of Ti-6Al-4V alloy. The apparent activation energy was determined to be 667 kJ mol−1 for isothermal compression of the Ti-6Al-4V alloy without hydrogenation content of 0.27 wt.% in the α + β phase region (760-960 °C), and this value was about 655 and 199 kJ mol−1 for the alloy with 0.27 wt.% of hydrogenation content in the α + β phase region (760-840 °C) and β phase region (840-960 °C), respectively. Constitutive equation was developed for the high-temperature deformation of Ti-6Al-4V alloy both without and with hydrogenation content of 0.27 wt.%.  相似文献   

7.
The microstructure and mechanical properties of the Ti-43.7Al-3.2(Nb,Cr,Mo)-0.2B alloy in the as-cast state (after gasostatistic processing) and of the Ti-45Al-8Nb-0.2C alloy after hot extrusion at temperatures corresponding to the ?? + ?? phase field followed by heat treatment have been studied. The extruded heavy-alloyed alloy has demonstrated significantly higher plastic/mechanical properties at room temperature with close values of the plasticity/tensile strength and long-term strength at elevated temperatures. A comparison of the results with literature data has shown the properties of the as-cast Ti-43.7Al-3.2(Nb,Cr,Mo)-0.2B to be similar to or superior to those of the best-known casting ?? (TiAl) + ??2 (Ti3Al) alloys.  相似文献   

8.
The effect of strain rate and deformation temperature on the α→β phase transformation in 47Zr-45Ti-5Al-3V alloy with an initial widmanstatten α structure was investigated. At the deformation temperature of 550 °C, the volume fraction of α phase decreased with increasing strain rate. At 600 and 650 °C, the volume fraction of α phase firstly increased to a maximum value with increasing strain rate from 1×10?3 to 1×10?2 s?1, and then decreased. At 700 °C, the microstructure consisted of single β phase. At a given strain rate, the volume fraction of α phase decreased with increasing deformation temperature. With decreasing strain rate and increasing deformation temperature, the volume fraction and size of globular α phase increased. At 650 °C and 1×10?3 s?1, the lamellar α phase was fully globularized. The variation in the volume fraction and morphology of α phase with strain rate and deformation temperature significantly affected the hardness of 47Zr-45Ti-5Al-3V alloy.  相似文献   

9.
A novel Ti-6.38Al-3.87V-2.43Mo alloy was designed with a cluster formula of 12[Al-Ti12](V0.75Mo0.25Ti2)+4[Al-Ti12](Al3)by replacing Ti with Mo/V on the basis of the Ti-Al congruent alloy.The effects of laser power and scanning speed on the molten pool size,surface roughness,relative density,microstructure,and micro-hardness of single-track and bulk Ti-6.38Al-3.87V-2.43Mo samples prepared via laser additive manufacturing(LAM)were investigated.The results show that processing parameters significantly affect the formability,microstructure,and micro-hardness of the alloy.With decreasing laser power from 1,900 W to 1,000 W,the relative density is decreased from 99.86%to 90.91%due to the increase of lack-of-fusion;however,with increasing scanning speed,the relative density does not change significantly,but exceeds 99%.In particular,Ti-6.38Al-3.87V-2.43Mo samples of single-track and bulk exhibit a good formability under an input laser power of 1,900 W and a scanning speed of 8 mm·s-1,and display the lowest surface roughness(Ra=13.33μm)and the highest relative density(99.86%).Besides,the microstructure of LAM Ti-6.38Al-3.87V-2.43Mo alloy coarsens with increasing laser power or decreasing scanning speed due to the greater input energy reducing the cooling rate.The coarsening of the microstructure decreases the microhardness of the alloy.  相似文献   

10.
Research on elevated temperature deformation behavior of Ti-6Al-4V sheets   总被引:1,自引:0,他引:1  
Hot deformation behaviors were studied by means of scanning electron microscopy (SEM) and uniaxial thermal tension. The effect of de-formation temperature and strain rate on flow stress was evaluated, and deformation mechanism was analyzed. The results show that the stress-strain curves of Ti-6Al-4V (TC4) alloy sheet and TC4 alloy bar at elevated temperatures have different forms and rules. Flow stress of TCA is controlled by both strain rate and deformation temperature. The flow stress decreases with the increase of high temperature. Deforma-tion mechanisms exhibit dynamic recovery and recrystallization feature within high temperature region and grain boundary slip behaviors at low temperature.  相似文献   

11.
The thermomechanical coupling simulation of the isothermal equal channel angular pressing(ECAP) of Ti-6Al-4V alloy was conducted.The effect of processing parameters,ECAP pass number and the residual billet on the effective strain,stress and temperature distribution was investigated.Based on the coupling simulation results,it is found that the shear factor,ram speed,deformation temperature,channel intersection angle and residual billet significantly affect the ECAP deformation behaviors.Meanwhile,the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C,in which the repeated rotation angle around the longitudinal billet axis before reinsertion in the die was 180°,were conducted at a deformation temperature of 750°C,a ram speed of 0.3 mm·s-1,an outer arc of curvature of 60° and a channel intersection angle of 120°.Furthermore,a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy.The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.  相似文献   

12.
置氢Ti-6Al-4V钛合金的热压缩变形行为研究   总被引:1,自引:0,他引:1  
通过热模拟压缩实验,研究了氢对Ti-6Al-4V钛合金热变形行为的影响。结果表明,置氢可以显著降低Ti-6Al-4V钛合金高温压缩时的流动应力,提高Ti-6Al-4V钛合金的热加工变形速率一个数量级以上,并且明显降低了Ti-6Al-4V钛合金的变形温度。在变形温度760℃~800℃范围内,置氢量为0.4wt%的Ti-6Al-4V钛合金的流动应力最小;在变形温度840℃~920℃范围内,置氢量0.2wt%的Ti-6Al-4V钛合金的流动应力最小。同时,置氢前后Ti-6Al-4V钛合金的变形激活能计算结果表明,置氢量为0.4wt%的Ti-6Al-4V钛合金在α+β两相区的变形激活能为208.3kJ/mol,与未置氢Ti-6Al-4V钛合金相比降低了316kJ/mol。  相似文献   

13.
Hot deformation behavior and microstructure evolution of TC4 titanium alloy   总被引:1,自引:0,他引:1  
The hot deformation behavior of Ti-6Al-4V(TC4) titanium alloy was investigated in the temperature range from 650 °C to 950 °C with the strain rate ranging from 7.7×10-4 s-1 to 7.7×10-2 s-1.The hot tension test results indicate that the flow stress decreases with increasing the deformation temperature and increases with increasing the strain rate.XRD analysis result reveals that only deformation temperature affects the phase constitution.The microstructure evolution under different deformation conditions was characterized by TEM observation.For the deformation of TC4 alloy,the work-hardening is dominant at low temperature,while the dynamic recovery and dynamic re-crystallization assisted softening is dominant at high temperature.  相似文献   

14.
The effects of 0.3%(molar fraction, the same below) yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy were investigated by simulated isothermal forging tests. The ingots with the nominal compositions of Ti-45Al-5Nb and Ti-45Al-5Nb-0.3Y were prepared by induction skull melting. Simulated isothermal forging tests were conducted on Gleeble 1500D thermo-simulation machine using a 6 mm in diameter and 10 mm in length compressive specimen at the deformation temperatures of 1 100, 1 150, 1 200 ℃ and strain rates of 1.0, 0.1, 0.01 s^-1. The results show that yttrium addition remarkably improves hot deformability of Ti-45Al-5Nb alloy. An appropriate hot deformation processing parameter of Ti-45Al-5Nb-0.3Y alloy is determined as 1 200 ℃, 0.01 s^-1. The flow stresses are decreased by yttrium addition under the same compressive conditions. The activation energies of deformation Q are calculated as 448.6 and 399.5 kJ/mol for Y-free and Y-containing alloys, respectively. The deformed microstructure observation under 1 200 ℃, 0.01 s^-1 condition indicates that Ti-45Al-5Nb-0.3Y alloy shows more dynamic recrystallization. The improvement of hot deformability of Ti-45Al-5Nb-0.3Y alloy induced by yttrium addition should be attributed to that the smaller the original lamellar colonies, the lower the deformation resistance and activation energy of deformation are, and the more the dynamic recrystallization is.  相似文献   

15.
研究了热挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为和微观组织演变,分析了该合金在温度为623K-723K,应变速率为1x10-4s-1-1x10-2s-1条件下的流变应力随温度和应变速率的变化,归纳了温度、应变速率与流变应力的关系。研究结果表明:温度和应变速率是影响流变应力的主要因素,在变形过程中,流变应力随变形温度的升高和应变速率的降低而减小。在本实验条件下,该合金的变形本构方程可用双曲正弦函数 来描述,应力指数n=3.286,激活能Q=238kJ/mol,表明该合金的高温塑性变形机制主要是位错滑移和攀移。  相似文献   

16.
采用Gleeble-1500热力模拟机对铸态Ti-48Al-2Nb-2Cr合金进行高温变形热压缩试验,变形温度范围为1050~1200℃,应变速率范围为0.001~0.1s^-1,压缩变形量为60%。研究该合金高温变形温度和应变速率与流变应力之间的关系,计算了合金激活能,并建立了Ti-48Al-2Nb-2Cr合金的Arrhenius本构模型和多元线性回归的本构模型。结果表明,该合金的激活能随温度升高和应变速率增大而增大;Arrhenius本构模型的相关系数为0.98228,平均相对误差为9.97%,相对误差在10%以内的点只占62.0%;而采用多元线性回归本构模型的相关系数为0.99566,平均相对误差为4.76%,相对误差在10%以内的点占92.6%,本构精度较高。  相似文献   

17.
Hot compression behavior of Ti-5Al-5Mo-5V-1Cr-1Fe alloy with an equiaxed (α+β) starting microstructure was investigated by isothermal compression test and optical microscopy. Based on the true strain–stress data with temperature correction, constitutive models with a high accuracy were developed and processing maps were established. Strain inhomogeneity at different locations in the compressed sample is reduced by raising temperature, leading to a uniform distribution of α phases. For the temperature range of 800–840 °C with a strain rate of 10 s?1, the transformed volume fraction of α phase increases and the average grain size of α phase decreases slightly with increasing the temperature, indicating co-existence of dynamic recovery and dynamic recrystallization. Flow localization and faint β grain boundaries are observed at the strain rate of 10 s?1 in the temperature range of 860–900 °C. The processing map analysis shows that hot working of Ti-5Al-5Mo-5V-1Cr-1Fe alloy should be conducted with the strain rate lower than 0.01 s?1 to extend its workability.  相似文献   

18.
In the present investigation, isothermal compression tests of Ti-22Al-25Nb alloy were carried out under various hot deformation conditions, including the deformation temperature range of 940–1060 °C and the strain rate range of 0.01–10 s?1. The constitutive relationship of Ti-22Al-25Nb alloy was developed using artificial neural network (ANN). During training process, standard error back-propagation algorithm was employed in the network model using experimental data sets. Based on the fitness function obtained from established ANN model, the optimization model of hot processing parameters for Ti-22Al-25Nb alloy was successfully created using genetic algorithm (GA). The optimal results achieved from the integrated ANN and GA optimization model were tested by using processing map. Consequently, it can be suggested that the combined approach of ANN and GA provides a novel way with respect to the optimization of processing parameters in the field of materials science.  相似文献   

19.
Isothermal compression of Ti-6Al-4V alloy was conducted in the deformation temperature range of 1093-1303 K,the strain rates of 0.001,0.01,0.1,1.0,and 10.0 s-1,and the height reductions of 20%-60% with an interval of 10%.After compression,the effect of the processing parameters including deformation temperature,strain rate,and height reduction on the flow stress and the microstructure was investigated.The grain size of primary α phase was measured using an OLYMPUS PMG3 microscope with the quantitative metallography SISC IAS V8.0 image analysis software.A model of grain size in isothermal compression of Ti-6Al-4V alloy was developed using fuzzy neural net-work(FNN) with back-propagation(BP) learning algorithm.The maximum difference and the average difference between the predicted and the experimental grain sizes of primary α phase are 13.31% and 7.62% for the sampled data,and 16.48% and 6.97% for the non-sampled data,respectively.It can be concluded that the present model with high prediction precision can be used to predict the grain size in isothermal compression of Ti-6Al-4V alloy.  相似文献   

20.
采用Gleeble-1500热模拟试验机进行等温压缩实验,在变形温度为1000-1150°C、应变速率为0.001-1s-1的条件下,研究粉末冶金Ti-47Al-2Cr-0.2Mo合金的流变行为。结果表明:变形温度和应变速率对该合金的流变行为有显著影响,流变应力随应变速率的增加和变形温度的降低而增大。不同应变条件下的加工图表明该合金的加工图对应变量很敏感。应变量为0.5时,对应的加工图表明粉末冶金Ti-47Al-2Cr-0.2Mo合金合适的加工区域是:温度1000-1050°C、应变速率0.001-0.05s-1;温度1050-1125°C、应变速率0.01-0.1s-1。对热变形后合金的显微组织和加工图进行分析,发现1000°C,0.001s-1是该合金进行热变形的最佳工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号