首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microwave dielectric properties of two A-site-deficient perovskite-type ceramics in the La6Mg4A2W2O24 [A=Ta and Nb] system were investigated. The compounds were synthesized by the solid-state ceramic route. The structure and microstructure were analyzed using X-ray diffraction and scanning electron microscopy techniques. The dielectric properties were measured in the microwave frequency range [4–6 GHz] by the resonance method. La6Mg4Ta2W2O24 had Q u× f =13 600 GHz, ɛr=25.2, and τf=−45 ppm/°C and La6Mg4Nb2W2O24 had Q u× f =16 400 GHz, ɛr=25.8, and τf=−56 ppm/°C.  相似文献   

2.
A Zn2Te3O8 ceramic was investigated as a promising dielectric material for low-temperature co-fired ceramics (LTCC) applications. The Zn2Te3O8 ceramic was synthesized using the solid-state reaction method by sintering in the temperature range 540°–600°C. The structure and microstructure of the compounds were investigated using X-ray diffraction (XRD) and scanning electron microscopy methods. The dielectric properties of the ceramics were studied in the frequency range 4–6 GHz. The Zn2Te3O8 ceramic has a dielectric constant (ɛr) of 16.2, a quality factor ( Q u× f ) of 66 000 at 4.97 GHz, and a temperature coefficient of resonant frequency (τf) of −60 ppm/°C, respectively. Addition of 4 wt% TiO2 improved the τf to −8.7 ppm/°C with an ɛr of 19.3 and a Q u× f of 27 000 at 5.14 GHz when sintered at 650°C. The chemical reactivity of the Zn2Te3O8 ceramic with Ag and Al metal electrodes was also investigated.  相似文献   

3.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

4.
The effects of V2O5 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O–0.583Nb2O5–3.248TiO2 (LNT) ceramics have been investigated. With addition of low-level doping of V2O5 (≤2 wt%), the sintering temperature of the LNT ceramics could be lowered down to around 920°C due to the liquid phase effect. A secondary phase was observed at the level of 2 wt% V2O5 addition. The addition of V2O5 does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the excellent microwave dielectric properties of ɛr=21.5, Q × f =32 938 GHz, and τf=6.1 ppm/°C could be obtained for the 1 wt% V2O5-doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as an internal electrode.  相似文献   

5.
This paper details the investigation of the quality factor ( Q ), dielectric permittivity (ɛr) and temperature coefficient of resonant frequency (τf) of the TE01δ mode of the columbite binary niobate ceramics, with the formula MNb2O6 where M=2+ cation, in relation to their degree of sintering, microstructure and phase composition. The ceramics were made from a mixed oxide preparative route and fired over a range of temperatures from 800° to 1400°C, and most formed the columbite structure. A comprehensive study was made of the niobates containing the transition metal cations M=Mn2+, Co2+, Ni2+, Cu2+, and Zn2+, and the group II metal cations M=Mg2+, Ca2+, Sr2+, and Ba2+. All columbite niobates were found to have ɛr between 17 and 22 and negative τf values between –45 and –76 ppm/°C, and ZnNb2O6, MgNb2O6, CaNb2O6, and CoNb2O6 had high Q f values of 84 500, 79 600, 49 600, and 41 700 GHz, respectively. The Q f of MgNb2O6 was found to rise to over 95 000 GHz when heated at 1300°C for 50 h.  相似文献   

6.
The Ca(B'1/2Nb1/2)O3 [B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, and In] complex perovskites have been prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscopy methods. The ceramics have dielectric constant (ɛr) in the range 23–32, normalized Q -factor ( Q u× f ) 11 000–38 000 GHz and temperature coefficient of resonant frequency (τf) −43–5.2 ppm/°C. The microwave dielectric properties of Ca(B'1/2Nb1/2)O3 ceramics are found to depend on the ionic radii of B'-site elements and tolerance factor ( t ). The substitution of Ba2+ and Sr2+ for Ca2+ resulted a phase transition in Ca(B'1/2Nb1/2)O3 ceramics. The (Ca0.05Ba0.95) (Y1/2Nb1/2)O3 has τf close to zero (1.2 ppm/°C) with ɛr=35 and Q u× f =48 500 GHz and is proposed as a useful material for base station applications. Dielectric properties of the Ca(B'1/2Nb1/2)O3 ceramics were tailored by the addition of TiO2 and CaTiO3.  相似文献   

7.
The formation process and microwave dielectric properties of the Mg2V2O7 ceramics were investigated. The MgV2O6 phase that was formed at around 450°C interacted with remnant MgO above 590°C to form a homogeneous monoclinic Mg2V2O7 phase. Finally, this monoclinic Mg2V2O7 phase was changed to a triclinic Mg2V2O7 phase for the specimen fired at 800°C. Sintering at 950°C for more than 5 h produced high-density triclinic Mg2V2O7 ceramics. In particular, the Mg2V2O7 ceramics sintered at 950°C for 10 h exhibited the good microwave dielectric properties of ɛr=10.5, Q × f =58 275 GHz, and τf=−26.9 ppm/°C.  相似文献   

8.
The BiVO4 additive was found effective for low-temperature firing of ZnNb2O6 polycrystalline ceramics below 950°C in air without a serious degradation in their microwave dielectric properties. Dense BiVO4-doped ZnNb2O6 samples of a relative sintered density over 95% could be prepared even at 925°C. An optimally processed specimen exhibited excellent microwave dielectric properties of Q · f = 55000 GHz, ɛr= 26, and τf=−57 ppm/°C. With increasing BiVO4 addition up to 20 mol% relative to ZnNb2O6, while the quality factor Q · f was gradually decreased, the relative dielectric constant, ɛr, was linearly increased and the temperature coefficient of resonant frequency, τf, was slightly increased. The variations in Q · f and ɛr are surely attributable to the residual BiVO4 in the ZnNb2O6 matrix. An unexpected slight increase in τf is probably due to the formation of the Bi(V,Nb)O4-type solid solution.  相似文献   

9.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

10.
Li2CO3 was added to Mg2V2O7 ceramics in order to reduce the sintering temperature to below 900°C. At temperatures below 900°C, a liquid phase was formed during sintering, which assisted the densification of the specimens. The addition of Li2CO3 changed the crystal structure of Mg2V2O7 ceramics from triclinic to monoclinic. The 6.0 mol% Li2CO3-added Mg2V2O7 ceramic was well sintered at 800°C with a high density and good microwave dielectric properties of ɛ r=8.2, Q × f =70 621 GHz, and τf=−35.2 ppm/°C. Silver did not react with the 6.0 mol% Li2CO3-added Mg2V2O7 ceramic at 800°C. Therefore, this ceramic is a good candidate material in low-temperature co-fired ceramic multilayer devices.  相似文献   

11.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

12.
The La5CrTi3O15 and La4MCrTi3O15 (M=Pr, Nd, and Sm) microwave dielectric ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the ceramics were studied by X-ray diffraction and scanning electron microscopy methods. The dielectric properties of the ceramics were measured in the microwave frequency region using a network analyzer by the resonance method. The ceramics show a dielectric constant (ɛr) in the range of 37 to 39.5, a quality factor ( Q u× f o) 17,300 to 34,000 GHz, and a temperature coefficient of resonant frequency (τf) in the range from −22 to −38 ppm/°C.  相似文献   

13.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

14.
This paper describes the synthesis of Ba2Ti9O20 ceramics at extremely low temperatures (∼150°C) and the subsequent growth of bulk resonators on silicon substrates by hydrothermal processing of their sol–gel composites. X-ray diffraction analysis shows excellent crystallinity, while scanning electron microscopy evidenced densification and development of bridging structures at the grain boundaries and interfaces. Transmission electron micrographs further confirmed the development of sol–gel-derived crystalline interfaces between sol–gel-derived material and powder particles. The dielectric properties of a resonator measured in the 5–6 GHz microwave frequency range were ɛr=38 and Q u× f =12,000 at 5.6 GHz and τf=+6 ppm/°C. The density, dielectric properties, and mechanical strength at the bulk ceramic–thin film interface are enhanced by a hydrothermally induced dissolution–crystallization process, which leads to interparticle bridges. The novel low-temperature ceramic process has high potential for the growth of ceramic resonators on integrated circuits and is demonstrated by the fabrication of an integrated dielectric resonator antenna for system-on-chip applications.  相似文献   

15.
The ATiO3 (A=Co, Mn, Ni) dielectric ceramics have been synthesized by the conventional solid-state ceramic route. The structure and microstructure of these ceramic samples have been studied using powder X-ray diffraction and scanning electron microscopy. The microwave dielectric properties such as relative permittivity (ɛr), quality factor ( Q u× f ), and coefficient of temperature variation of resonant frequency (τf) of the ceramics have been measured in the frequency range 4–6 GHz using resonance methods. The dielectric constant of ATiO3 (A=Co, Mn, Ni) varies from 19 to 25 and τf close to −50 ppm/°C. The ceramics have high-quality factors ( Q u× f ) of 62 500 GHz (at 5.42 GHz) for CoTiO3, 15 200 GHz (at 5.22 GHz) for MnTiO3, and 13 900 GHz (at 5.24 GHz) for NiTiO3, respectively.  相似文献   

16.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 (NCT) ceramics using starting powders of Nd2O3, CoO, and TiO2 prepared by the conventional solid-state route have been researched. The dielectric constant values (ɛr) saturated at 24.8–27. Quality factor ( Q × f ) values of 37 900–140 000 (at 9 GHz) and the measured τf values ranging from −45 to −48 ppm/°C can be obtained when the sintering temperatures are in the range of 1410°–1500°C. The ɛr value of 27, the Q × f value of 140 000 (at 9 GHz) and the τf value of −46 ppm/°C were obtained for NCT ceramics sintered at 1440°C for 4 h. For applications of high selective microwave ceramic resonator, filter, and antenna, NCT is proposed as a suitable material candidate.  相似文献   

17.
The Sr(B'0.5Ta0.5)O3 ceramics where B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, and Yb have been prepared by the conventional solid-state ceramic route and their microwave dielectric properties have been investigated. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscope techniques. The relative permittiviy (ɛr) varies linearly with B'-site ionic radii, except for La, and the temperature coefficient of resonant frequency (τf) varies linearly with the tolerance factor. The Sr(B'0.5Ta0.5)O3 ceramics have ɛr in the range 25.9–32, Q u× f =4500–54 300 GHz, and τf=−79 to −42 ppm/°C. A slight deviation from stoichiometry affects the dielectric properties of these double perovskites. Partial substitution of Ba for Sr could tune the dielectric properties. Addition of rutile (TiO2) lowered the sintering temperature and improved the dielectric properties of Sr(B'0.5Ta0.5)O3 ceramics.  相似文献   

18.
Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) garnet ceramics were synthesized and their microwave dielectric properties were investigated for advanced substrate materials in microwave integrated circuits. The Re3Ga5O12 ceramics sintered at 1350°–1500°C had a high-quality factor ( Q × f ) ranging from 40 000 to 192 173 GHz and a low-dielectric constant (ɛr) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τf) in the range of −33.7 to −12.4 ppm/°C. In particular, the Sm3Ga5O12 ceramics sintered at 1450°C exhibited good microwave dielectric properties of ɛr=12.4, Q × f =192 173 GHz, and τf=−19.2 ppm/°C.  相似文献   

19.
(1− x )ZnNb2O6· x TiO2 ceramics were prepared using both anatase and rutile forms of TiO2. At a composition of x = 0.58, a mixture region of ixiolite (ZnTiNb2O8) and rutile was observed and the temperature coefficient of resonant frequency (τf) was ∼0 ppm/°C. We found that although ɛr and τf were comparable, the quality factor ( Q × f , Q ≈ 1/ tan δ, f = resonant frequency) of 0.42ZnNb2O6·0.58TiO2 prepared from anatase and rutile was 6000 and 29 000, respectively. The origin of the difference in Q × f of both samples was investigated by measuring electrical conductivity and by analysis of the anatase–rutile phase transition. The anatase-derived sample had higher conductivity, which was related to the reduction of Ti4+. It is suggested that the increase of dielectric loss originates from an increase in Ti3+ and oxygen vacancies due to an anatase–rutile phase transition.  相似文献   

20.
The effects of the addition of V2O5 on the sintering behavior, microstructure, and microwave dielectric properties of 5Li2O–1Nb2O5–5TiO2 (LNT) ceramics have been investigated. With low-level doping of V2O5 (≤3 wt%), the microstructure of the LNT ceramic changed from a special two-level intergrowth structure into a two-phase composite structure with separate grains. And the sintering temperature of the LNT ceramics could be lowered to around 900°C by adding a small amount of V2O5 without much degradation in microwave dielectric properties. Typically, better microwave dielectric properties of ɛr=41.7, Q × f =7820 GHz, and τ f =45 ppm/°C could be obtained for the 1 wt% V2O5-doped ceramics sintered at 900°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号