首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the recrystallization and grain growth processes of a low nickel stainless steel. Samples of steel sheets with various cold rolling degrees were annealed at different temperatures and the recrystallization and grain growth kinetics have been studied. The grain size of the samples has been determined via automatic image analysis and transformed to 3-D values according to the Saltykov model. The experimental data have been analysed according to a modified model developed using the statistical approach by Abbruzzese and Lucke for the grain growth. This approach supplies a unified equation describing at the same time primary recrystallization and grain growth. The values of the dislocation density obtained from the comparison of theoretical predictions and experimental data of the grain mean radius are properly correlated to the mechanical properties of the steel.  相似文献   

2.
3.
4.
An experimental study addressing the effect of tensile deformation on recrystallized grain size has been undertaken to explore the conditions leading to abnormal grain growth in Type 316H austenitic stainless steel. Following a solution heat treatment, a Type 316H stainless steel has been subjected to various tensile deformations up to a maximum of approximately 50% strain and then heated at a temperature of 1150 °C for 0.5 h followed by furnace cooling. A fraction of abnormally large grains is observed following a prior strain of approximately 20%. The results are presented, in terms of standard statistical analysis, and also graphically. The graphical presentation provides a clear, visual appreciation of uni- and bi-modal distributions, which may be of general help in other analyses of this nature.  相似文献   

5.
Samples of an AISI type 316L stainless steel were subjected to different treatments to promote changes in their microstructure. The specimens were heated in a box furnace set at four different temperatures for 30 min and cooled in air to room temperature by placing them in water after the cycle was completed. The samples were prepared following standard metallographic procedures, the microstructure was revealed with an electrolytic etchant, and the average grain size in each sample was determined by the mean line intercept technique. Images from the microstructures were digitized and fed into a personal computer for their fractal analysis by box counting. Two different approaches were used to obtain the fractal dimension of the structure, yielding to similar values in both cases. It was found that the fractal dimension of the microstructure increased with the reduction in grain size.  相似文献   

6.
7.
Precipitation behavior of grain boundary carbides and its influence on mechanical properties and fracture mechanism of the high nitrogen austenitic stainless steel produced by different processing methods were studied. The simulation software Thermo-calc was applied to analyze the effects of element content on precipitation of carbides. The results show that hot-rolled plate has higher strength, but solution-treated one followed by water quenching has excellent combination of strength and ductility (toughness). M23C6 is the main precipitate and deteriorates the toughness of the steel obviously when it precipitates along grain boundaries. In this case, intergranular fracture is the predominant failure mechanism and the fracture surface is characterized by the shape of rock candy. The toughness at −40 °C is decreased by 53% when small amount of carbides precipitates during sand cooling process after solution treatment. The simulation results exhibit that with the decrease of C content, both the precipitation quantity and precipitation temperature of M23C6 decrease. Cr and N have no influence on precipitation quantity of M23C6, but the precipitation temperature will increase with the increase of Cr and the decrease of N.  相似文献   

8.
9.
Abstract

The effects of strain induced martensite formation and grain size on the room temperature low cycle fatigue behaviour of AISI 304LN austenitic stainless steel were considered. Two grain sizes, namely, 60 and 350 μm, were developed via suitable solution annealing treatments. Microstructural changes before and after low cycle fatigue testing were identified. The martensitic transformation was studied using aferritescope, X-ray diffractometry, and optical microscopy. The mechanical response was correlated with the microstructural changes. Secondary hardening as well as a crossover in the strain–life plots for the two grain sizes resulted from martensite formation. Dislocation configurations depended on the strains imposed.

MST/1902  相似文献   

10.
11.
The effect of grain misorientation on the sensitization of grain boundaries in austenitic stainless steel was investigated by sensitizing samples consisting of a large number of 50–80 μm size grains that were sintered to flat, 10 mm2 single crystals. Seven different sensitization treatments were employed and samples were intergranulary corroded in the modified Strauss test. X-ray pole figures were obtained for each sample and were used to identify the grain misorientations that were resistant to sensitization. In general, macroscopic grain boundary geometry could not explain the sensitization behaviour of most grain boundaries. Nevertheless, the Σ = 9 boundary was found to be especially resistant to sensitization. Results suggest that grain misorientation primarily affects the growth of sensitization rather than its nucleation. Finally, the crystallographic plane of the grain boundary appears to have an effect on sensitization. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
This paper presents an example of grain boundary engineering (GBE) for improving intergranular-corrosion and weld-decay resistance of austenitic stainless steel. Transmission and scanning electron microscope (TEM and SEM) observations demonstrated that coincidence site lattice (CSL) boundaries possess strong resistance to intergranular precipitation and corrosion in weld decay region of a type 304 austenitic stainless steel weldment. A thermomechanical treatment for GBE was tried for improvement of intergranular corrosion resistance of the 304 austenitic stainless steel. The grain boundary character distribution (GBCD) was examined by orientation imaging microscopy (OIM). The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of CSL boundaries indicated a maximum at the small roll-reduction. The corrosion rate was much smaller in the thermomechanical-treated specimen than in the base material for long time sensitization. The optimum thermomechanical treatment introduced a high frequency of CSL boundaries and the clear discontinuity of corrosive random boundary network in the material, and resulted in the high intergranular corrosion resistance arresting the propagation of intergranular corrosion from the surface. The optimized 304 stainless steel showed an excellent resistance to weld decay during arc welding.  相似文献   

13.
14.
《材料科学技术学报》2019,35(10):2213-2219
The effect of grain size (in the range from 4 μm to 12 μm) on the hydrogen embrittlement (HE) of 304 austenitic stainless steel (ASS) was studied. HE susceptibility result shows that HE resistance increases with grain refinement. Electron backscattered diffraction kernel average misorientation (EBSD-KAM) mapping shows that the strain localization can be mitigated by grain refinement. Hence, strain localization sites which act as highways for hydrogen diffusion and preferred crack initiation sites can be reduced along with grain refinement, leading to a high HE resistance. Meanwhile, grain size shows no influence on the strain induced martensite (SIM) transformation during the hydrogen charging slow strain tensile test (SSRT). Hence, the SIM formed during hydrogen charging SSRT is not responsible for the different HE resistance of 304 ASSs with various grain sizes. Hydrogen diffusion is supposed to be controlled by a competition between short-circuit diffusion along random grain boundary (RGB) and hydrogen trapping at dislocations, leading to a maximum hydrogen diffusion coefficient in the 304 ASS with an average grain size of 8 μm.  相似文献   

15.
Abstract

The present paper investigates completely reversed room temperature low cycle fatigue (LCF) behaviour of solution annealed austenitic stainless steel AISI 316L with two different grain sizes of 90 and 139 μm developed by solution annealing treatment at 1050 and 1150°C respectively and at six strain amplitudes ranging between ± 0·375 and ± 1·00%. Complete cyclic hardening has been observed for both the grain sizes. While fine grained steel shows an improvement in cyclic life compared with that of coarse grained steel for strain amplitudes ± 0·375 and ± 0·50%, and perfectly follows the Coffin–Manson (C–M) behaviour within the experimental domain, higher cyclic life with bilinear C–M behaviour is observed in the case of coarse grained steel at ± 0·625% strain amplitude and above. Optical microscopy of fatigue fracture surfaces reveals the formation of martensite on cyclic straining predominantly at higher strain amplitudes.  相似文献   

16.
Abstract

During plastic deformation of a polycrystalline material, both the grain interior and the grain boundary regions exhibit distinctly different dislocation behaviours at a given strain and temperature. Studying the variation of experimental flow stress with temperature, it seems that the flow stress of a fine grained polycrystalline material is mainly controlled by dislocation dynamics at and in the vicinity of grain boundaries. At low temperatures in a polycrystalline material, the dislocations are piled up at grain boundaries and the density of dislocations increases significantly in the grain boundary region, while at high temperatures the annihilation of dislocations take place at and in the vicinity of the grain boundaries during deformation. Therefore, the flow stress behaviour of a polycrystalline material can be understood in terms of the process of accumulation and annihilation of dislocations at and in the vicinity of grain boundaries at a given strain and temperature.  相似文献   

17.
Abstract

A relationship between ferrite grain size, cooling rate from austenitising temperature, austenitising time, and austenitising temperature is developed to predict the ferrite grain size of a low carbon steel. The coefficients of that relationship are determined experimentally. A Hall - Petch relationship is used to predict the yield stress and fracture stress from the predicted ferrite grain size. Considering the experimental results, maximum errors of 12.5% and 6.5% were found in the prediction of ferrite grain size and strengths, respectively.  相似文献   

18.
Abstract

The present study concerns the deformation behaviour of two austenitic stainless steels (base composition corresponding to 316L) with two different nitrogen levels, 0.14 and 0.29 wt-% respectively. The influence of grain size on the mechanical properties has been investigated. The grain size dependence of the monotonic as well as the cyclic stress-strain curves were shown to follow a Hall-Petch type relationship. The influence of the grain size was found to be lower for the cyclic thanfor the mOnotonic yield stresses. The lower grain size sensitivity of the cyclic yield stresses can be explained by the successive breakdown of the planar slip mode during cyclic straining. For both static and cyclic deformation modes the dependence of grain size increases with higher nitrogen content. Dislocation structures of the various conditions were studied with transmission electron microscopy and related to the mechanical behaviour of the two materials.  相似文献   

19.
The present study aims to investigate the effect of grain refinement on strain hardening behaviour and fracture surface characteristics in 316LN austenitic stainless steel (ASS). The ASSs with varying grain sizes were obtained through 90% cold rolled reduction and subsequently phase reversion annealing treatment. The results showed that the grain refinement from coarse-grained (CG) structure to ultrafine-grained (UFG) structure increased the yield strength whilst maintaining a reasonable ductility. The strain hardening curves in all the samples were divided into three stages. The fractures in all the samples were ductile fracture with dimples. The subtle differences in the strain hardening behaviour and fracture surface characteristics among the samples with various grain sizes from CG structure to UFG structure were influenced by the deformation mechanisms of austenite.  相似文献   

20.
The effect of grain boundary microstructure on fatigue crack propagation in austenitic stainless steel was investigated in order to control fatigue crack propagation. The fraction of low-Σ coincidence boundaries in specimens was controlled by thermomechanical processing. The specimen with the higher fraction of low-Σ boundaries (73%) showed the lower propagation rate of fatigue crack than the specimen with the lower fraction of low-Σ boundaries (53%). The ratio of intergranular fracture segments to the total crack length was lower for the specimen with the higher fraction of low-Σ boundaries. Moreover, the roles of grain boundaries in the fatigue crack propagation were investigated in connection with grain boundary microstructure, i.e., the character distribution and geometrical configuration of grain boundaries. It is evidenced that the approach to grain boundary engineering is applicable to controlling fatigue crack propagation in austenitic stainless steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号