首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, we report the ultrasonic-assisted precipitation technique for the fabrication of Cu-doped TiO2 nanoparticles. The prepared sample showed high crystallinity, purity and nanoparticles like structure with the diameter in the range of 10–22 nm. The bandgap for Cu-doped TiO2 nanoparticles was estimated to be 2.91 eV using Tauc plot, which is considerable for improving the light-harvesting capacity. Further, the prepared Cu-doped TiO2 was used as photocatalyst for the eradication of ofloxacin (OFX), an antibiotic from an aqueous phase under visible illuminations. About 72% degradation of OFX (10 mg/L, pH 7) was achieved with Cu-doped TiO2 nanoparticles after 180 min of visible illumination. The probable photocatalytic mechanism for the decomposition of OFX has been proposed based on reactive species trapping study. Moreover, the antibiotic efficiency of OFX was investigated against Escherichia coli and it was observed that its antimicrobial activity was significantly diminished after the photocatalytic decomposition of the OFX solution with synthesized nanoparticles.  相似文献   

2.
An efficient visible light photocatalyst has been prepared from TiO2 nanoparticles and a partly conjugated polymer derived from polyvinyl chloride (PVC). It was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activity of the as-prepared photocatalyst was evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The XPS, FT-IR, and Raman spectra show that the partly conjugated polymer derived from PVC exists on the surface of the TiO2 nanoparticles. The UV–Vis DRS, XRD, and TEM results reveal that the modification of the partly conjugated polymer can obviously improve the absorbance of the TiO2 nanoparticles in the range of visible light and hardly affect their size and crystallinity. The visible light photocatalytic activity of the as-prepared TiO2 nanocomposites is higher than that of commercial TiO2 (Degussa P25) and comparable with those of visible light photocatalysts reported in the literature. Their visible light photocatalytic stability is also good. The reasons for their excellent visible light photocatalytic activity and the major factors affecting their photocatalytic activity are discussed.  相似文献   

3.
P25–TiO2 nanoparticles were doped with fluorine, nitrogen, and their combination. Samples of N-doped, F-doped, and N–F-codoped TiO2 were prepared by physical and chemical treatments. The products were characterized by X-ray diffraction, Fourier transform infrared, Brunauer–Emmett–Teller technique, and ultraviolet–visible diffuse reflectance spectroscopy. It was revealed that absorption spectra of N-doped, F-doped, and F–N-codoped TiO2 were extended to the visible region wavelengths, and the photocatalytic experiments showed enhancement of acetaldehyde removal under visible light irradiation. The photocatalytic activity of the powders was evaluated through the process of acetaldehyde degradation under visible light scattering in a continuous stirred tank reactor. F–N-codoped nano-TiO2 calcinated at 500 °C possessed the highest photocatalytic activity. The photocatalytic kinetic consumption of acetaldehyde was studied on N–F–TiO2 powders under 80 W Hg lamp irradiation, and a Langmuir-type kinetic model was developed for the reaction with appropriate kinetic parameters.  相似文献   

4.
In this work, mesoporous Au/TiO2 composites have been synthesized and tested on photodegradation of methylene blue dye solution. Mesoporous TiO2 prepared at 450 °C using triblock polymer F127 as structure-directing agent was applied as substrate, while various HAuCl4 concentrations were used for Au loading through deposition-precipitation method using urea as precipitator and hydrogen reducing process. The influences of Au loading on the microstructures of mesoporous TiO2 including degree of dispersion, particle size, surface area, light absorption, and band gap were studied with transmission electron microscopy (TEM), X-ray diffraction (XRD), diffuse reflection infrared Fourier transformed spectroscopy (DRIFT), N2 adsorption–desorption isotherm analysis (BET), and UV–Vis diffuse reflectance spectra. With Au loading, the size of TiO2 nanoparticles in Au/TiO2 composites is similar as that of TiO2 substrate. However, the degree of dispersion was greatly improved. Furthermore, an obvious surface plasmon resonance centered at 570 nm was found in UV–Vis diffuse reflectance spectra for Au/TiO2 composites. Au loading also induced an obvious red shift of light absorption from UV region to visible region and strengthened both UV and visible light absorption in contrast to substrate. Photodegradation results verified that photocatalytic activity of mesoporous TiO2 was improved by Au loading. 0.25%Au/TiO2 composite showed the highest activity, which may be ascribed to its high surface hydroxyl content and the formed Schottky junction after Au loading. These results suggested that noble metal modification is a promising way to synthesize photocatalysts with both high activity and visible light sensitivity.  相似文献   

5.
A semi‐core–shell structure of perylene diimide (PDI) self‐assembly coated with TiO2 nanoparticles is constructed, in which nanoscale porous TiO2 shell is formed and PDI self‐assembly presented 1D structure. A full‐spectrum photocatalyst is obtained using this structure to resolve a conundrum—TiO2 does not exhibit visible‐light photocatalytic activity while PDI does not exhibit ultraviolet photocatalytic activity. Furthermore, the synergistic interaction between TiO2 and PDI enables the catalyst to improve its ultraviolet, visible‐light, and full‐spectrum performance. The interaction between TiO2 and PDI leads to formation of some new stacking states along the Π–Π stacking direction and, as a consequence, electron transfer from PDI to TiO2 suppresses the recombination of e?/h+ and thus improves photocatalytic performance. But the stronger interaction in the interface between TiO2 and PDI is not in favor of photocatalytic performance, which leads to rapid charge recombination due to more disordered stacking states. The study provides a theoretical direction for the study of core–shell structures with soft materials as a core, and an idea for efficient utilization of solar energy.  相似文献   

6.
This work provides the design and synthesis of nitrogen doped rutile TiO2 nanoparticles working as efficient photocatalysts under visible light irradiation. Nitrogen doped rutile TiO2 nanoparticles are synthesized through the surface nitridation of rutile nanoparticles, which have been prepared in advance. The experimental results show that the nitrogen element is easily doped into the lattice of TiO2 nanoparticles and its doping amount increases with the decrease of nanocrystallite size. The photocatalytic activity of the nanoparticles under visible light irradiation is correlated not only with the amount of doped nitrogen element but also with the morphology and crystallinity of nanoparticles.  相似文献   

7.
Polyaniline (PANI) as a promising conducting polymer has been used to prepare polyaniline/TiO2 (PANI/TiO2) nanocomposite with core-shell structure as photocatalyst. Titanium dioxide (TiO2) nanoparticles with an average crystal size of 21?nm were encapsulated by PANI via the in situ polymerization of aniline on the surface of TiO2 nanoparticles. FT?CIR, UV-Vis-NIR, XRD, SEM and TEM techniques were used to characterize the PANI/TiO2 core-shell nanocomposite. Photocatalytic activity of PANI/TiO2 nanocomposite was investigated under both UV and visible light irradiations and compared with unmodified TiO2 nanoparticles. Results indicated deposition of PANI on the surface of TiO2 nanoparticles which improved the photocatalytic activity of pristine TiO2 nanoparticles.  相似文献   

8.
Nanocrystalline particles of pure anatase titania were prepared by two different methods. One is the sol-gel method at ambient temperature using ultrasonication (TiO2-SG-US) and conventional stirring method (TiO2-SG-S) and the other by surfactant assisted hydrothermal synthesis (TiO2-HT). More uniform distribution/dispersion of the nanoparticles (SEM), marginally higher surface area, better thermal stability and phase purity are some of the advantages of preparation of nanocrystalline titania by sol gel ultrasonication method and hydrothermal synthesis method. The behavior of anatase titania in photocatalytic decomposition of methylene blue in aqueous medium was studied as a function of the method of preparation and the crystallite size. The nanoparticles prepared by ultrasonication method were more effective than both, the sample prepared by conventional stirring method and commercial Degussa P-25. The higher photocatalytic activity of TiO2-SG-US is attributed to the more uniform size of the particles as compared to TiO2-SG-S samples. Both TEM and XRD data on TiO2-HT samples reveal a uniform and nanocrystalline TiO2 particles, which showed photocatalytic activity in both UV and visible region although brookite phase was also present.  相似文献   

9.
《Materials Research Bulletin》2013,48(11):4942-4946
Ag modified SnO2/TiO2 nanoparticles were successfully prepared by a modified sol–gel method, without adding any acid or alkali. The entire preparation differs from the traditional sol–gel synthesis of TiO2 that the reaction can get controlled by adjusting the flow speed of water vapor. Ultraviolet–visible diffuse reflectance spectra (UV–vis) and spin-trapping electron paramagnetic resonance (EPR) were used to forecast the photocatalytic activity of the samples, and the results were proved by the degradation of methylene blue solution under visible light. Compared with pure TiO2, as-prepared Ag modified SnO2/TiO2 nanoparticles exhibited not only an enhanced photocatalytic activity but also an improved stability. Among all of samples, the composite with 0.5% of Ag and 1% of Sn showed the best photocatalytic performance and stability. Further increasing the Ag proportion will result in the decrease of the photocatalytic activity. A relative mechanism was proposed and discussed in detail.  相似文献   

10.
Weiwei Zou  Feng Chen 《Materials Letters》2010,64(15):1710-1712
DDAT(S-1-Dodecyl-S′-(α, α′-dimethyl-α″-acetic acid) trithiocarbonate) modified TiO2 photocatalysts were prepared by hydrothermal treatment before TiO2 crystallization. The adsorption of DDAT onto the surface of titania nanoparticles led the shifting of the onset wavelength of the optical absorption in the visible range corresponding to ligand-to-metal charge transfer transition within the surface-modified complex. The interaction of TiO2 nanoparticles with DDAT was investigated by infrared spectra. The XRD indicated that the modification process could not influence the crystallite phase of TiO2. The photocatalytic studies suggested that the DDAT modified TiO2 photocatalysts showed enhanced photocatalytic efficiency of photodegradation of 2,4-dichlorophenol compared with the as-prepared TiO2 under visible-light irradiation.  相似文献   

11.
Zirconia and nitrogen-doped TiO2 powder was synthesized using a polymer complex solution method for the preparation of an enhanced visible light photocatalyst. The produced catalysts were characterized via the Brunauer, Emmett, and Teller method (BET), X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, and UV–Vis spectrophotometry analyses. The N-doped TiO2/ZrO2 photocatalyst showed a high specific surface area and small crystal sizes. The XPS spectra of the N-doped TiO2/ZrO2 sample indicated that nitrogen was doped into the TiO2 lattice and enhanced the photocatalytic activity. The UV–Vis absorption spectra of the N-doped TiO2/ZrO2 sample noticeably shifted to the visible light region compared to that of the TiO2. The photocatalytic activities of the prepared catalysts were evaluated for the decomposition of gaseous NOx under UV and visible light irradiations. The photocatalytic activities of N-doped TiO2/ZrO2 were much greater than those of commercial Degussa P25 in both the UV and visible light regions. The high photocatalytic activity can be attributed to stronger absorption in the visible light region, a greater specific surface area, smaller crystal sizes, more surface OH groups, and to the effect of N-doping, which resulted in a lower band gap energy.  相似文献   

12.
TiO2 nanocrystalline powders with various Mn-doping levels were synthesized by the sol-gel process using tetrabutyl titanate and manganese nitrate as precursors. The crystal structure, morphology, doping concentration, optical absorption property, and elemental state of the obtained samples were analyzed. TEM results showed that the synthesized TiO2 powders were anatase nanoparticles about 7 nm in size. EDX and XPS analyses proved the incorporation of Mn ions into the TiO2 lattice. A remarkable red shift of the absorption edge was achievable by increased Mn content, leading to gigantically narrowed energy gap to permit absorption well into the infrared spectral region. The dramatic optical absorbance of the doped TiO2 nanopowders in the visible spectral region led to strong photocatalytic activity under visible light illumination, which was observed by measuring the degradation of methylene blue. In contrast, little degradation was observed for the pure TiO2 powder. The optimum Mn/Ti ratio was observed to be 0.2 at.% for photocatalytic applications.  相似文献   

13.
The CdS/TiO2NTs composite was prepared by a simple two-step chemical solution routes to directly transfer trititanate nanotubes to TiO2NTs and simultaneously coupled with CdS nanoparticles. The results of XRD, TEM, Diffuse reflectance UV-Visible absorption spectra revealed that the CdS nanoparticles were homogeneously embedded on the surface of TiO2NTs and the absorption spectrum of TiO2NTs was extended to visible region. The activity of hydrogen production by photocatalytic water decomposition for the CdS/TiO2NTs composite was examined under visible light irradiation (λ > 400 nm) and the quantity of H2 evolution was ca. 1708 μL/g for 6 h.  相似文献   

14.
Highly efficient visible light TiO2 photocatalyst was prepared by the sol-gel method at lower temperature (≤300 °C), and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The effects of the heat treatment temperature and time of the as-prepared TiO2 on its visible light photocatalytic activity were investigated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength ≥ 400 nm). Results show that the as-prepared TiO2 nanoparticles possess an anatase phase and mesoporous structure with carbon self-doping and visible photosensitive organic groups. The visible light photocatalytic activity of the as-prepared TiO2 is greatly higher than those of the commercial TiO2 (P-25) and other visible photocatalysts reported in literature (such as PPy/TiO2, P3HT/TiO2, PANI/TiO2, N-TiO2 and Fe3+-TiO2) and its photocatalytic stability is excellent. The reasons for improving the visible light photocatalytic activity of the as-prepared TiO2 can be explained by carbon self-doping and a large amount of visible photosensitive groups existing in the as-prepared TiO2. The apparent optical thickness (τapp), local volumetric rate of photo absorption (LVRPA) and kinetic constant (kT) of the photodegradation system were calculated.  相似文献   

15.
The photocatalytic performance of heterostructure photocatalysts is limited in practical use due to the charge accumulation at the interface and its low efficiency in utilizing solar energy during photocatalytic process. In this work, a ternary hierarchical TiO2 nanorod arrays/graphene/ZnO nanocomposite is prepared by using graphene sheets as bridge between TiO2 nanorod arrays (NRAs) and ZnO nanoparticles (NPs) via a facile combination of spin-coating and chemical vapor deposition techniques. The experimental study reveals that the graphene sheets provide a barrier-free access to transport photo-excited electrons from rutile TiO2 NRAs and ZnO NPs. In addition, there generates an interface scattering effect of visible light as the graphene sheets provide appreciable nucleation sites for ZnO NPs. This synergistic effect in the ternary nanocomposite gives rise to a largely enhanced photocurrent density and visible light-driven photocatalytic activity, which is 2.6 times higher than that of regular TiO2 NRAs/ZnO NPs heterostructure. It is expected that this hierarchical nanocomposite will be a promising candidate for applications in environmental remediation and energy fields.  相似文献   

16.
In order to utilize visible light in photocatalytic reactions, nitrogen atoms were doped in commercially available photocatalytic TiO2 powders by using an organic compound such as urea and guanidine. Analysis by X-ray photoelectron spectroscopy (XPS) indicated that N atoms were incorporated into two different sites of the bulk phase of TiO2. A significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. These N-doped TiO2 powders exhibited photocatalytic activity for the decomposition of 2-propanol in aqueous solution under visible light irradiation. The photocatalytic activity increased with the decrease of doped N atoms in O site, while decreased with decrease of the other sites. Degradation of photocatalytic activity based on the release of nitrogen atoms was observed for the reaction in the aqueous suspension system.  相似文献   

17.
In order to utilize visible light in photocatalytic reactions, nitrogen atoms were doped in commercially available photocatalytic TiO2 powders by using an organic compound such as urea and guanidine. Analysis by X-ray photoelectron spectroscopy (XPS) indicated that N atoms were incorporated into two different sites of the bulk phase of TiO2. A significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. These N-doped TiO2 powders exhibited photocatalytic activity for the decomposition of 2-propanol in aqueous solution under visible light irradiation. The photocatalytic activity increased with the decrease of doped N atoms in O site, while decreased with decrease of the other sites. Degradation of photocatalytic activity based on the release of nitrogen atoms was observed for the reaction in the aqueous suspension system.  相似文献   

18.
A macro-porous silica film served as mechanical support to immobilize TiO2 nanoparticles, which were doped with erbium. The films and the nanoparticles were prepared by sol–gel route. The nanoparticles exhibited photocatalytic activity under visible light. We obtained a degradation rate of methylene blue that followed first order kinetics. The sensitization of the nanoparticles to visible light was attributed to a red shift in the band-gap of the TiO2 due to the addition of erbium ions.  相似文献   

19.
Abstract

TiO2 nanoparticles modified with nitrogen and sulfur were prepared from titania nanotubes by a facile wet chemistry method. The samples synthesized with different thiourea/TiO2 ratios showed a uniform nanoparticle size distribution centred at approximately 10 nm with a developed specific surface area of 246 m2 g-1. These modified nanosized photocatalysts exhibited higher photocatalytic activity for the degradation of gaseous isopropanol than unmodified titania nanotubes under visible illumination. This could be attributed to the synergistic effects of a large specific surface area, strong absorption in the visible region, a redshift in the adsorption edge, and surface adsorption modification induced by nitrogen and sulfur compounds.  相似文献   

20.
TiO2 nanoparticles modified with nitrogen and sulfur were prepared from titania nanotubes by a facile wet chemistry method. The samples synthesized with different thiourea/TiO2 ratios showed a uniform nanoparticle size distribution centred at approximately 10 nm with a developed specific surface area of 246 m2 g-1. These modified nanosized photocatalysts exhibited higher photocatalytic activity for the degradation of gaseous isopropanol than unmodified titania nanotubes under visible illumination. This could be attributed to the synergistic effects of a large specific surface area, strong absorption in the visible region, a redshift in the adsorption edge, and surface adsorption modification induced by nitrogen and sulfur compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号