首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part A》1999,30(7):859-870
The Mode I interlaminar fracture toughness properties of vinyl ester-based composites reinforced with fibreglass manufactured by the advanced textile technologies of braiding, knitting, stitching and through-the-thickness weaving are assessed in comparison to a variety of traditional composites made from fibreglass such as unidirectional or woven rovings. The interlaminar fracture toughness (GIc) of braided and knitted composites are higher than traditional composites by factors of more than two and four, respectively. Toughening in these textile composites was caused by extensive crack branching as the interlaminar crack was forced to follow a tortuous path through the complex fibre architectures. The GIc values of the composites reinforced in the through-thickness direction by weaving or stitching were higher than traditional composites by factors of nearly two and three, respectively, with the main toughening mechanism being crack bridging by the through-thickness binder yarns/stitches. A review of Mode I interlaminar fracture data collected from papers shows that advanced textile techniques are capable of manufacturing composites with substantially improved delamination resistance.  相似文献   

2.
This paper investigates the influence of fibre volume fraction on the mode I interlaminar fracture toughness G Ic of a glass-fibre/vinyl ester composite. Two fibre volume fraction parameters are defined; a global value for the composite specimen and a value for the fibre-dense intralaminar regions. The range of global fibre volume fraction studied was 32–52 %. Results show that G Ic values for crack initiation are independent of fibre volume fraction and similar to matrix resin G Ic . Variations in the G Ic for steady-state crack propagation, and the amount of fibre bridging, are not completely explained by changes in global fibre volume fraction. Instead they are consistent with fibre volume fraction in the fibre-dense intralaminar regions, through which the crack preferred to grow. It is concluded that this latter parameter is more relevant for G Ic characterisation as a function of fibre volume fraction.  相似文献   

3.
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to quantify mode I fracture toughness (KIc) of rock, and it has also been applied to mode II fracture toughness (KIIc) testing in some research on the basis of some assumptions about the crack growth process in the specimen. However, the KIc value measured using the CCNBD specimen is usually conservative, and the assumptions made in the mode II test are rarely assessed. In this study, both laboratory experiments and numerical modeling are performed to study the modes I and II CCNBD tests, and an acoustic emission technique is used to monitor the fracture processes of the specimens. A large fracture process zone and a length of subcritical crack growth are found to be key factors affecting the KIc measurement using the CCNBD specimen. For the mode II CCNBD test, the crack growth process is actually quite different from the assumptions often made for determining the fracture toughness. The experimental and numerical results call for more attention on the realistic crack growth processes in rock fracture toughness specimens.  相似文献   

4.
The transfer of matrix toughness to composite mode I interlaminar fracture toughness (G Ic ) has been investigated in unidirectional glass-fibre reinforced composites with brittle and rubber-toughened vinyl ester matrices. Single-edge-notch bend (SENB) and double cantilever beam (DCB) specimens were used for matrix and composite G Ic characteristion, respectively. The initial crack opening displacement rate was used as the parameter for comparison of G Ic results. Matrix G Ic was completely transferred to composite G Ic for crack initiation (G Ic-init) in the brittle-matrix composites, but in the toughened composites transfer was only partial due to the presence of fibres. The conclusion is that the maximum contribution to energy absorption by the matrix is more accurately reflected by G Ic-init, and should be used for further assessment of the enhancing effect of fibre bridging during steady-state crack propagation, instead of matrix G Ic . A plot of composite G Ic for steady-state crack propagation, G Ic-prop versus G Ic-init indicates that the enhancing effect of fibre bridging is greater in the toughened composites. This enhancement is related to a larger deformation zone size in the toughened matrices.  相似文献   

5.
The mode I delamination fracture toughness and fatigue strength of thin-section three-dimensional (3D) woven composite materials is experimentally determined. The non-crimp 3D orthogonally woven carbon–epoxy composites were thin (2 mm) and consequently their through-thickness z-binder yarns were inclined at a very steep angle (about 70°) from the orthogonal direction. The steep z-binder angle has a marked effect on the delamination toughening and fatigue strengthening mechanisms. Experimental testing revealed that the fracture toughness and fatigue resistance increased progressively with the volume content of z-binders. However, the steep angle caused the z-binder yarns bridging the delamination crack to deform and fail in shear and through-thickness tension, rather than in-plane tension which usually occurs in thick 3D woven composites. Mode I pull-off tests on a single woven z-binder yarn embedded within the composite revealed that the crack bridging traction load, strain energy absorption and failure mechanism were strongly affected by the steep angle.  相似文献   

6.
The aim of this work is to study the influence of weave structure on the crack growth behavior of thick E-glass/polyester woven fabric composites laminates. Two different types of laminates were fabricated: (i) balanced: plain weave (taffetas T)/chopped strand mat weave (M) [T/M]6 and (ii) unbalanced: 4-hardness satin weave (S)/chopped strand mat weave [S/M]7. In order to accurately predict damage criticality in such structures, mixed mode fracture toughness data is required. So, the experiments were conducted using standards delamination tests under mixed mode loading and pure mode loading. These tests were carried out in mode II using End Load Split (ELS) tests and in mixed-mode I+II by Mixed Mode Flexure (MMF) tests under static conditions. The test methodology used for the experiments will be presented. The experimental results have been expressed in terms of total strain energy release rate and R-curves. The fracture toughness results show that the T/M interface is more resistant to delamination than the S/M interface.  相似文献   

7.
《Composites》1995,26(1):33-39
The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode II, GIc and GIIc, as well as the total strain energy release rate, Gmc, have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.  相似文献   

8.
《Composites》1995,26(2):125-133
Delamination of a cross-ply 0/90 glass fibre-reinforced composite laminate with an epoxy-phenol matrix was studied using a double cantilever beam test. Fracture toughness was determined by measurement of bend angle of the cantilever beams. Results obtained with this method were in agreement with those from conventional compliance and area methods. Two different fracture modes were observed: interlaminar and intralaminar. In the interlaminar fracture mode, crack jumps in the space between two neighbouring 0° and 90° plies were observed. With the interlaminar fracture mode, during crack initiation GIc decreased with crack length. Intralaminar fracture mode consisted of the gradual growth of a crack through a 0° ply. Fibres bridging the opposite sides of the crack were observed in this case, and fracture toughness GIc did not change with crack length. GIc (420 J m−2) at intralaminar fracture mode was approximately twice that at interlaminar fracture mode (220 J m−2). The difference in fracture toughness was explained by the dissipation of energy by fibres bridging the opposite sides of the crack at intralaminar fracture mode.  相似文献   

9.
The influence of in-plane fibre orientation on the mode I interlaminar fracture toughness, GIc of unstitched and stitched glass/polyester composites is investigated in this paper. The GIc of planar specimens depends on the fibre orientation, θ in the layers adjacent to the fracture plane, in addition to the property of matrix material. The mode I fracture toughness and fracture behavior of unstitched and stitched 0/0, 30/−30, 45/−45, 60/−60, 90/90 and 0/90 interfaces of unidirectional fibre mats (UD) and 30/−30, 45/−45 and 90/90 interfaces of woven roving mats (WRM) are studied. WRM layer orientation is represented by the direction of warp fibres. Stitching is done by untwisted Kevlar fibre roving of Tex 175 g/km at the stitch densities (number of stitches per unit area) of 10.24 and 20.48 stitches/inch2. The specimens having same stitch density, but different stitch distributions are prepared, and the influence of stitch distribution on GIc is studied. Double cantilever beam (DCB) tests are carried out and the GIc is determined using modified beam theory. The GIc of both unstitched and stitched specimens increases with increase in orientation angle, θ upto 45° above which it decreases. The GIc values of unstitched 45/−45 delamination interface is around 2.4 times that of the unstitched 0/0 interfaces. The influence of fibre orientation on GIc is clearly observed in unstitched specimens, whereas in the stitched specimens, stitching plays an important role in improving the GIc and suppresses the influence of fibre orientation; degree of suppression increases with increasing stitch density. When the value of θ is above 45°, transverse cracks are observed in the delamination interface surrounded by UD layers; while in the delamination interface surrounded by WRM layers, transverse cracks are not initiated irrespective of the fibre orientation angle.  相似文献   

10.
An experimental study has been conducted to assess temperature effects on mode-I and mode-II interlaminar fracture toughness of carbon fibre/polyetherimide (CF/PEI) and glass fibre/polyetherimide (GF/PEI) thermoplastic composites. Mode-I double cantilever beam (DCB) and mode-II end notched flexure (ENF) tests were carried out in a temperature range from 25 to 130°C. For both composite systems, the initiation toughness, G IC,ini and G IIC,ini, of mode-I and mode-II interlaminar fracture decreased with an increase in temperature, while the propagation toughness, G IC,prop and G IIC,prop, displayed a reverse trend. Three main mechanisms were identified to contribute to the interlaminar fracture toughness, namely matrix deformation, fibre/matrix interfacial failure and fibre bridging during the delamination process. At delamination initiation, the weakened fibre/matrix interface at elevated temperatures plays an overriding role with the delamination growth initiating at the fibre/matrix interface, rather than from a blunt crack tip introduced by the insert film, leading to low values of G IC,ini and G IIC,ini. On the other hand, during delamination propagation, enhanced matrix deformation at elevated temperatures and fibre bridging promoted by weakened fibre/matrix interface result in greater G IC,prop values. Meanwhile enhanced matrix toughness and ductility at elevated temperatures also increase the stability of mode-II crack growth.  相似文献   

11.
This paper discusses the bridging effect of fibres on mode I fatigue delamination growth in unidirectional and multidirectional polymer composite laminates based on a series of double cantilever beam (DCB) tests. From the results, there is sufficient evidence that fibre bridging can decrease the crack growth rate da/dN significantly, and using only one fatigue resistance curve to determine the delamination behavior in composite materials with large-scale fibre bridging may be inadequate. The bridging created in fatigue delamination is different from that of quasi-static delamination at the same crack length. So it is incorrect to use the resistance curve (R-curve) from quasi-static delamination tests to normalize fatigue delamination results.  相似文献   

12.
To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both G IC initiation and G IIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher G IC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.  相似文献   

13.
14.
Experimental investigations have been performed on unidirectional glass fibre reinforced/epoxy composites in Mode II (Forward shear) with the presence of crack parallel to the fibres direction through the use of end-cracked beam. A concentrated load at the Centre of the beam produced bending-induced shear deformation at the crack tip. Calibration factors for Mode II have been obtained. The stress-intensity factor at instability KIIR(INR) is obtained by experiments on a small end cracked beam through a compliance matching procedure. The crack growth resistance at instability and the corresponding critical strain energy release rate are independent of initial crack in the range of crack length investigated. In composite materials, fibre-matrix interfacial shear stress play an important role in load transfer mechanism: hence Mode II study may be very useful to analyse the interfacial mechanisms and to understand the fracture behaviour of unidirectional fibre reinforced composites in Mode I when load is applied in the direction of the fibres.  相似文献   

15.
《Composites Part B》2013,45(1):242-247
Bamboo is a kind of biological composites reinforced by unidirectional long fiber. Once there exists crack, the propagation of delamination is controlled by the interlaminar fracture toughness instead of by strength. In this paper, the end notched flexure (ENF) beam specimen was used to test the Mode II interlaminar fracture toughness GIIC along grain of Moso bamboo internode and the fracture surface was analyzed. The results were obtained that the Mode II interlaminar fracture toughness GIIC calculated by the experiment parameter substitution method was more accurate and the value was 1303.18 J/m2 (coefficient of variation = 8.96%) which was about three times higher than the value of Mode I interlaminar fracture toughness; the crack propagation of Mode II interlaminar fracture was mainly self-similar cracking, but the fracture surface was rougher. Ground tissue in the zone of Mode II crack propagation was characterized by hackle shearing deformation. The SEM photos showed that ground tissue separated from fiber along middle lamella under shear stress and as the increasing of the dislocation of upper and lower layer, the thin-walled ground tissue would fracture transversely by tension, while to thick-walled fiber cell, only middle lamella and primary wall were torn then debonded, fragments remained.  相似文献   

16.
缝合复合材料II型层间断裂特性研究   总被引:8,自引:5,他引:3       下载免费PDF全文
分别采用测量ENF试样加载点位移与测量其端部剪切位移CSD(Crack Shear Displacement)的试验方法,研究了缝合复合材料层合板的II型层间断裂韧性以及缝合密度,缝合线的直径等缝合参数对于缝合复合材料层合板II型层间断裂韧性和分层模式的影响。结果表明,缝合降低了层合板初始分层韧性GIIi,但对于分层的扩展有良好的抑制作用。缝合参数对此有较大影响。   相似文献   

17.
《Composites Part A》2001,32(1):1-11
In this paper R-curves for mode I crack growth in composites are modelled based on measured bridging laws. It is shown that simulated and measured R-curves are in good agreement. Simulations show that variations in the measured bridging law parameters can explain the scatter in overall R-curves. Finite element procedures for treating a generalised nonlinear law for intra-laminar fibre bridging (longitudinal splitting) in combination with R-curve modelling are demonstrated for mode I loading. The difference between calculating the crack growth resistance by linear elastic fracture mechanics and by the J integral for the double cantilever beam specimen loaded by wedge forces is elucidated. It is shown that calculating the crack growth resistance by linear elastic fracture mechanics results in overestimation of the steady-state crack growth resistance.  相似文献   

18.
Effect of transverse normal stress on mode II fracture toughness of unidirectional fiber reinforced composites was studied experimentally in conjunction with finite element analyses. Mode II fracture tests were conducted on the S2/8552 glass/epoxy composite using off-axis specimens with a through thickness crack. The finite element method was employed to perform stress analyses from which mode II fracture toughness was extracted. In the analysis, crack surface contact friction effect was considered. It was found that the transverse normal compressive stress has significant effect on mode II fracture toughness of the composite. Moreover, the fracture toughness measured using the off-axis specimen was found to be quite different from that evaluated using the conventional end notched flexural (ENF) specimen in three-point bending. It was found that mode II fracture toughness cannot be characterized by the crack tip singular shear stress alone; nonsingular stresses ahead of the crack tip appear to have substantial influence on the apparent mode II fracture toughness of the composite.  相似文献   

19.
Carbon fibre/poly (ether-ether-ketone) (PEEK) composites were fabricated from plain weave cloth using the commingled yarn of carbon fibres with PEEK filaments. The undirectional specimen was made from the warp of commingled yarn and the weft of PEEK yarn, while the two-dimensional specimen was made from commingled yarns both of the warp and the weft. During the hot-pressing process, PEEK filaments melt to form the matrix of the composite. The interlaminar fracture toughness of the commingled composite was measured and compared with that of the prepreg composite. The critical strain energy release rates,/'G Ics, obtained for the commingled composites were higher than the prepreg composite. In particular, the two-dimensional composite exhibited higherG Ic than the unidirectional commingled composite. Factors increasing the fracture toughness of commingled composites have also been investigated by SEM observation of the fractured surface.  相似文献   

20.
Experimental observations of delamination growth in two stiffened-skin geometries are compared to predictions made using a three-dimensional crack tip element based approach. Each geometry consists of a six-ply graphite/epoxy skin co-cured to a six-ply, hat-shaped stiffener containing a preimplanted teflon delamination between the skin and stiffener at the stiffener termination point. One stiffened-skin geometry was loaded in three-point bending and the other had in-plane tension loads applied to the skin. To predict delamination growth, a three-dimensional crack tip element analysis was first performed on each geometry in order to determine the total energy release rate, G, as well as its mode I, II and III components, GI, GII and GIII, respectively. These results were used to define a mode mix at each point along the delamination front, Gs/G, where Gs=GII + GIII. To obtain the delamination toughness, Gc, it was assumed that Gc exhibits the same dependence on Gs/G as on GII/G, where the results for Gc versus GII/G were taken from an earlier experimental study. Next, a comparison of the energy release rate to the toughness at each position along the delamination front was performed, and these results were scaled appropriately in order to predict the sequence of loads and corresponding locations at which the delamination will advance. The predictions were then compared to experimental results that included c-scan images of the test specimens taken at each increment of observed growth, and very good quantitative and qualitative correlations were obtained for both geometries. These results indicate the practicality of, and considerable computational savings that may be achieved by, employing crack tip element analyses for delamination growth predictions in realistic structural geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号