首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Given a class C of graphs, a graph G=(V,E) is said to be a C-probe graph if there exists a stable (i.e., independent) set of vertices XV and a set F of pairs of vertices of X such that the graph G=(V,EF) is in the class C. Recently, there has been increasing interest and research on a variety of C-probe graph classes, such as interval probe graphs, chordal probe graphs and chain probe graphs.In this paper we focus on chordal-bipartite probe graphs. We prove a structural result that if B is a bipartite graph with no chordless cycle of length strictly greater than 6, then B is chordal-bipartite probe if and only if a certain “enhanced” graph B is a chordal-bipartite graph. This theorem is analogous to a result on interval probe graphs in Zhang (1994) [18] and to one on chordal probe graphs in Golumbic and Lipshteyn (2004) [11].  相似文献   

3.
A module is a set of vertices H of a graph G=(V,E) such that each vertex of V?H is either adjacent to all vertices of H or to none of them. A homogeneous set is a nontrivial module. A graph Gs=(V,Es) is a sandwich for a pair of graphs Gt=(V,Et) and G=(V,E) if EtEsE. In a recent paper, Tang et al. [Inform. Process. Lett. 77 (2001) 17-22] described an O(Δn2) algorithm for testing the existence of a homogeneous set in sandwich graphs of Gt=(V,Et) and G=(V,E) and then extended it to an enumerative algorithm computing all these possible homogeneous sets. In this paper, we invalidate this latter algorithm by proving there are possibly exponentially many such sets, even if we restrict our attention to strong modules. We then give a correct characterization of a homogeneous set of a sandwich graph.  相似文献   

4.
We consider the following NP-hard problem: given a connected graph G=(V,E) and a link set E on V disjoint to E, find a minimum size subset of edges FE such that (V,EF) is 2-edge-connected. In G. Even et al. (2005) [2] we presented a 1.8-approximation for the problem. In this paper we improve the ratio to 1.5.  相似文献   

5.
Let G=(V,E) be a simple graph without isolated vertices. A vertex set SV is a paired-dominating set if every vertex in VS has at least one neighbor in S and the induced subgraph G[S] has a perfect matching. In this paper, we present a linear-time algorithm to find a minimum paired-dominating set in strongly chordal graphs if the strong (elimination) ordering of the graph is given in advance.  相似文献   

6.
A homogeneous set is a non-trivial module of a graph, i.e., a non-unitary, proper subset H of a graph's vertices such that all vertices in H have the same neighbors outside H. Given two graphs G1(V,E1), G2(V,E2), the Homogeneous Set Sandwich Problem asks whether there exists a sandwich graph GS(V,ES), E1ESE2, which has a homogeneous set. Recently, Tang et al. [Inform. Process. Lett. 77 (2001) 17-22] proposed an interesting O(?1n2) algorithm for this problem, which has been considered its most efficient algorithm since. We show the incorrectness of their algorithm by presenting three counterexamples.  相似文献   

7.
In a graph G=(V,E), a subset FV(G) is a feedback vertex set of G if the subgraph induced by V(G)?F is acyclic. In this paper, we propose an algorithm for finding a small feedback vertex set of a star graph. Indeed, our algorithm can derive an upper bound to the size of the feedback vertex set for star graphs. Also by applying the properties of regular graphs, a lower bound can easily be achieved for star graphs.  相似文献   

8.
In a graph G=(V,E), a bisection (X,Y) is a partition of V into sets X and Y such that |X|?|Y|?|X|+1. The size of (X,Y) is the number of edges between X and Y. In the Max Bisection problem we are given a graph G=(V,E) and are required to find a bisection of maximum size. It is not hard to see that ⌈|E|/2⌉ is a tight lower bound on the maximum size of a bisection of G.We study parameterized complexity of the following parameterized problem called Max Bisection above Tight Lower Bound (Max-Bisec-ATLB): decide whether a graph G=(V,E) has a bisection of size at least ⌈|E|/2⌉+k, where k is the parameter. We show that this parameterized problem has a kernel with O(k2) vertices and O(k3) edges, i.e., every instance of Max-Bisec-ATLB is equivalent to an instance of Max-Bisec-ATLB on a graph with at most O(k2) vertices and O(k3) edges.  相似文献   

9.
Let G=(V,E) be a simple graph with vertex set V and edge set E. A subset WVE is a mixed dominating set if every element x∈(VE)?W is either adjacent or incident to an element of W. The mixed domination problem is to find a minimum mixed dominating set of G. In this paper we first prove that a connected graph is a tree if and only if its total graph is strongly chordal, and thus we obtain a polynomial-time algorithm for this problem in trees. Further we design another linear-time labeling algorithm for this problem in trees. At the end of the paper, we show that the mixed domination problem is NP-complete even when restricted to split graphs, a subclass of chordal graphs.  相似文献   

10.
Given a weighted directed graph G=(V,A), the minimum feedback arc set problem consists of finding a minimum weight set of arcs A′⊆A such that the directed graph (V,A?A′) is acyclic. Similarly, the minimum feedback vertex set problem consists of finding a minimum weight set of vertices containing at least one vertex for each directed cycle. Both problems are NP-complete. We present simple combinatorial algorithms for these problems that achieve an approximation ratio bounded by the length, in terms of number of arcs, of a longest simple cycle of the digraph.  相似文献   

11.
In this paper we consider the following problem of computing a map of geometric minimal cuts (called MGMC problem): Given a graph G=(V,E) and a planar rectilinear embedding of a subgraph H=(V H ,E H ) of G, compute the map of geometric minimal cuts induced by axis-aligned rectangles in the embedding plane. The MGMC problem is motivated by the critical area extraction problem in VLSI designs and finds applications in several other fields. In this paper, we propose a novel approach based on a mix of geometric and graph algorithm techniques for the MGMC problem. Our approach first shows that unlike the classic min-cut problem on graphs, the number of all rectilinear geometric minimal cuts is bounded by a low polynomial, O(n 3). Our algorithm for identifying geometric minimal cuts runs in O(n 3logn(loglogn)3) expected time which can be reduced to O(nlogn(loglogn)3) when the maximum size of the cut is bounded by a constant, where n=|V H |. Once geometric minimal cuts are identified we show that the problem can be reduced to computing the L Hausdorff Voronoi diagram of axis aligned rectangles. We present the first output-sensitive algorithm to compute this diagram which runs in O((N+K)log2 NloglogN) time and O(Nlog2 N) space, where N is the number of rectangles and K is the complexity of the Hausdorff Voronoi diagram. Our approach settles several open problems regarding the MGMC problem.  相似文献   

12.
A vertex coloring c:V→{1,2,…,t} of a graph G=(V,E) is a vertex t-ranking if for any two vertices of the same color every path between them contains a vertex of larger color. The vertex ranking number χr(G) is the smallest value of t such that G has a vertex t-ranking. A χr(G)-ranking of G is said to be an optimal vertex ranking. In this paper, we present an O(|V|+|E|) time algorithm for finding an optimal vertex ranking of a starlike graph G=(V,E). Our result implies that an optimal vertex ranking of a split graph can be computed in linear time.  相似文献   

13.
In the Hitting Set problem, we are given a collection F of subsets of a ground set V and an integer p, and asked whether V has a p-element subset that intersects each set in F. We consider two parameterizations of Hitting Set below tight upper bounds, p=mk and p=nk. In both cases k is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNP ⊆ NP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F) is the minimum integer d such that for each XV the hypergraph with vertex set V?X and edge set containing all edges of F without vertices in X, has a vertex of degree at most d.In Nonblocker (Directed Nonblocker), we are given an undirected graph (a directed graph) G on n vertices and an integer k, and asked whether G has a set X of nk vertices such that for each vertex yX there is an edge (arc) from a vertex in X to y. Nonblocker can be viewed as a special case of Directed Nonblocker (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that Nonblocker has a linear-order kernel. We obtain a linear-order kernel for Directed Nonblocker.  相似文献   

14.
The Subset Feedback Vertex Set problem takes as input a pair (G,S), where G=(V,E) is a graph with weights on its vertices, and S?V. The task is to find a set of vertices of total minimum weight to be removed from G, such that in the remaining graph no cycle contains a vertex of S. We show that this problem can be solved in time O(1.8638 n ), where n=|V|. This is a consequence of the main result of this paper, namely that all minimal subset feedback vertex sets of a graph can be enumerated in time O(1.8638 n ).  相似文献   

15.
A set S?V is a power dominating set (PDS) of a graph G=(V,E) if every vertex and every edge in G can be observed based on the observation rules of power system monitoring. The power domination problem involves minimizing the cardinality of a PDS of a graph. We consider this combinatorial optimization problem and present a linear time algorithm for finding the minimum PDS of an interval graph if the interval ordering of the graph is provided. In addition, we show that the algorithm, which runs in Θ(nlogn) time, where n is the number of intervals, is asymptotically optimal if the interval ordering is not given. We also show that the results hold for the class of circular-arc graphs.  相似文献   

16.
We study the classical Bandwidth problem from the viewpoint of parametrised algorithms. Given a graph G=(V,E) and a positive integer k, the Bandwidth problem asks whether there exists a bijective function β:{1,…,∣V∣}→V such that for every edge uvE, ∣β−1(u)−β−1(v)∣≤k. It is known that under standard complexity assumptions, no algorithm for Bandwidth with running time of the form f(k)nO(1) exists, even when the input is restricted to trees. We initiate the search for classes of graphs where such algorithms do exist. We present an algorithm with running time n⋅2O(klogk) for Bandwidth on AT-free graphs, a well-studied graph class that contains interval, permutation, and cocomparability graphs. Our result is the first non-trivial algorithm that shows fixed-parameter tractability of Bandwidth on a graph class on which the problem remains NP-complete.  相似文献   

17.
For a graph G=(V,E), a subset DV is an r-hop dominating set if every vertex uVD is at most r-hops away from D. It is a 2-connected r-hop dominating set if the subgraph of G induced by D is 2-connected. In this paper, we present two approximation algorithms to compute minimum 2-connected r-hop dominating set. The first one is a greedy algorithm using ear decomposition of 2-connected graphs. This algorithm is applicable to any 2-connected general graph. The second one is a three-phase algorithm which is only applicable to unit disk graphs. For both algorithms, performance ratios are given.  相似文献   

18.
We study how a mobile robot can learn an unknown environment in a piecemeal manner. The robot's goal is to learn a complete map of its environment, while satisfying the constraint that it must return every so often to its starting position (for refueling, say). The environment is modeled as an arbitrary, undirected graph, which is initially unknown to the robot. We assume that the robot can distinguish vertices and edges that it has already explored. We present a surprisingly efficient algorithm for piecemeal learning an unknown undirected graph G=(VE) in which the robot explores every vertex and edge in the graph by traversing at most O(E+V1+o(1)) edges. This nearly linear algorithm improves on the best previous algorithm, in which the robot traverses at most O(E+V2) edges. We also give an application of piecemeal learning to the problem of searching a graph for a “treasure.”  相似文献   

19.
Let G=(V,E) be a graph. A global secure set SDV is a dominating set which also satisfies a condition that |N[X]∩SD|≥|N[X]−SD| for every subset XSD. The minimum cardinality of the global secure set in the graph G is denoted by γs(G). In this paper, we introduce the notion of γs-monotone graphs. The graph G is γs-monotone if, for every k∈{γs(G),γs(G)+1,…,n}, it has a global secure set of cardinality k. We will also present the results concerning the minimum cardinality of the global secure sets in the class of cographs.  相似文献   

20.
A homogeneous set is a non-trivial module of a graph, i.e., a non-empty, non-unitary, proper vertex subset such that all its elements present the same outer neighborhood. Given two graphs G1(V,E1) and G2(V,E2), the Homogeneous Set Sandwich Problem (HSSP) asks whether there exists a graph GS(V,ES), E1ESE2, which has a homogeneous set. This paper presents an algorithm that uses the concept of bias graph [S. Tang, F. Yeh, Y. Wang, An efficient algorithm for solving the homogeneous set sandwich problem, Inform. Process. Lett. 77 (2001) 17-22] to solve the problem in time, thus outperforming the other known HSSP deterministic algorithms for inputs where .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号