首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We show that the 3-colorability problem can be solved in O(n1.296) time on any n-vertex graph with minimum degree at least 15. This algorithm is obtained by constructing a dominating set of the graph greedily, enumerating all possible 3-colorings of the dominating set, and then solving the resulting 2-list coloring instances in polynomial time. We also show that a 3-coloring can be obtained in 2o(n) time for graphs having minimum degree at least ω(n) where ω(n) is any function which goes to ∞. We also show that if the lower bound on minimum degree is replaced by a constant (however large it may be), then neither a 2o(n) time nor a 2o(m) time algorithm is possible (m denotes the number of edges) for 3-colorability unless Exponential Time Hypothesis (ETH) fails. We also describe an algorithm which obtains a 4-coloring of a 3-colorable graph in O(n1.2535) time.  相似文献   

2.
We give improved parameterized algorithms for two “edge” problems MAXCUT and MAXDAG, where the solution sought is a subset of edges. MAXCUT of a graph is a maximum set of edges forming a bipartite subgraph of the given graph. On the other hand, MAXDAG of a directed graph is a set of arcs of maximum size such that the graph induced on these arcs is acyclic. Our algorithms are obtained through new kernelization and efficient exact algorithms for the optimization versions of the problems. More precisely our results include:
(i)
a kernel with at most αk vertices and βk edges for MAXCUT. Here 0<α?1 and 1<β?2. Values of α and β depends on the number of vertices and the edges in the graph;
(ii)
a kernel with at most 4k/3 vertices and 2k edges for MAXDAG;
(iii)
an O(k1.2418) parameterized algorithm for MAXCUT in undirected graphs. This improves the O(k1.4143)1 algorithm presented in [E. Prieto, The method of extremal structure on the k-maximum cut problem, in: The Proceedings of Computing: The Australasian Theory Symposium (CATS), 2005, pp. 119-126];
(iv)
an O(n2) algorithm for optimization version of MAXDAG in directed graphs. This is the first such algorithm to the best of our knowledge;
(v)
an O(k2) parameterized algorithm for MAXDAG in directed graphs. This improves the previous best of O(k4) presented in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458];
(vi)
an O(k16) parameterized algorithm to determine whether an oriented graph having m arcs has an acyclic subgraph with at least m/2+k arcs. This improves the O(k2) algorithm given in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458].
In addition, we show that if a directed graph has minimum out degree at least f(n) (some function of n) then Directed Feedback Arc Set problem is fixed parameter tractable. The parameterized complexity of Directed Feedback Arc Set is a well-known open problem.  相似文献   

3.
Suppose a graph G is given with two vertex-disjoint sets of vertices Z1 and Z2. Can we partition the remaining vertices of G such that we obtain two connected vertex-disjoint subgraphs of G that contain Z1 and Z2, respectively? This problem is known as the 2-Disjoint Connected Subgraphs problem. It is already NP-complete for the class of n-vertex graphs G=(V,E) in which Z1 and Z2 each contain a connected set that dominates all vertices in V?(Z1Z2). We present an O(1.2051n) time algorithm that solves it for this graph class. As a consequence, we can also solve this problem in O(1.2051n) time for the classes of n-vertex P6-free graphs and split graphs. This is an improvement upon a recent O(1.5790n) time algorithm for these two classes. Our approach translates the problem to a generalized version of hypergraph 2-coloring and combines inclusion/exclusion with measure and conquer.  相似文献   

4.
A bipartite graph G=(A,B,E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v??A, vertices adjacent to v are consecutive in?B. A complete bipartite subgraph of a graph G is called a biclique of G. Motivated by an application to analyzing DNA microarray data, we study the problem of finding maximum edge bicliques in convex bipartite graphs. Given a bipartite graph G=(A,B,E) which is convex on B, we present a new algorithm that computes a maximum edge biclique of G in O(nlog?3 nlog?log?n) time and O(n) space, where n=|A|. This improves the current O(n 2) time bound available for the problem. We also show that for two special subclasses of convex bipartite graphs, namely for biconvex graphs and bipartite permutation graphs, a maximum edge biclique can be computed in O(n??(n)) and O(n) time, respectively, where n=min?(|A|,|B|) and ??(n) is the slowly growing inverse of the Ackermann function.  相似文献   

5.
Due to a large number of applications, bicliques of graphs have been widely considered in the literature. This paper focuses on non-induced bicliques. Given a graph G=(V,E) on n vertices, a pair (X,Y), with X,YV, XY=∅, is a non-induced biclique if {x,y}∈E for any xX and yY. The NP-complete problem of finding a non-induced (k1,k2)-biclique asks to decide whether G contains a non-induced biclique (X,Y) such that |X|=k1 and |Y|=k2. In this paper, we design a polynomial-space O(n1.6914)-time algorithm for this problem. It is based on an algorithm for bipartite graphs that runs in time O(n1.30052). In deriving this algorithm, we also exhibit a relation to the spare allocation problem known from memory chip fabrication. As a byproduct, we show that the constraint bipartite vertex cover problem can be solved in time O(n1.30052).  相似文献   

6.
A certifying algorithm for a problem is an algorithm that provides a certificate with each answer that it produces. The certificate is an evidence that can be used to authenticate the correctness of the answer. A Hamiltonian cycle in a graph is a simple cycle in which each vertex of the graph appears exactly once. The Hamiltonian cycle problem is to determine whether or not a graph contains a Hamiltonian cycle. The best result for the Hamiltonian cycle problem on circular-arc graphs is an O(n2logn)-time algorithm, where n is the number of vertices of the input graph. In fact, the O(n2logn)-time algorithm can be modified as a certifying algorithm although it was published before the term certifying algorithms appeared in the literature. However, whether there exists an algorithm whose time complexity is better than O(n2logn) for solving the Hamiltonian cycle problem on circular-arc graphs has been opened for two decades. In this paper, we present an O(Δn)-time certifying algorithm to solve this problem, where Δ represents the maximum degree of the input graph. The certificates provided by our algorithm can be authenticated in O(n) time.  相似文献   

7.
We consider the minimum maximal matching problem, which is NP-hard (Yannakakis and Gavril (1980) [18]). Given an unweighted simple graph G=(V,E), the problem seeks to find a maximal matching of minimum cardinality. It was unknown whether there exists a non-trivial approximation algorithm whose approximation ratio is less than 2 for any simple graph. Recently, Z. Gotthilf et al. (2008) [5] presented a -approximation algorithm, where c is an arbitrary constant.In this paper, we present a -approximation algorithm based on an LP relaxation, where χ(G) is the edge-coloring number of G. Our algorithm is the first non-trivial approximation algorithm whose approximation ratio is independent of |V|. Moreover, it is known that the minimum maximal matching problem is equivalent to the edge dominating set problem. Therefore, the edge dominating set problem is also -approximable. From edge-coloring theory, the approximation ratio of our algorithm is , where Δ(G) represents the maximum degree of G. In our algorithm, an LP formulation for the edge dominating set problem is used. Fujito and Nagamochi (2002) [4] showed the integrality gap of the LP formulation for bipartite graphs is at least . Moreover, χ(G) is Δ(G) for bipartite graphs. Thus, as far as an approximation algorithm for the minimum maximal matching problem uses the LP formulation, we believe our result is the best possible.  相似文献   

8.
There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H-minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(nlog n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs. A preliminary version of this paper appeared in the Proceedings of the 13th Annual International Computing and Combinatorics Conference (COCOON), Banff, Alberta, Canada (2007), pp. 394–405. N. Alon research supported in part by a grant from the Israel Science Foundation, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. This paper forms part of a Ph.D. thesis written by S. Gutner under the supervision of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.  相似文献   

9.
In this paper we present unified methods to solve the minus and signed total domination problems for chordal bipartite graphs and trees in O(n2) and O(n+m) time, respectively. We also prove that the decision problem for the signed total domination problem on doubly chordal graphs is NP-complete. Note that bipartite permutation graphs, biconvex bipartite graphs, and convex bipartite graphs are subclasses of chordal bipartite graphs.  相似文献   

10.
We give anO(log4 n)-timeO(n 2)-processor CRCW PRAM algorithm to find a hamiltonian cycle in a strong semicomplete bipartite digraph,B, provided that a factor ofB (i.e., a collection of vertex disjoint cycles covering the vertex set ofB) is computed in a preprocessing step. The factor is found (if it exists) using a bipartite matching algorithm, hence placing the whole algorithm in the class Random-NC. We show that any parallel algorithm which can check the existence of a hamiltonian cycle in a strong semicomplete bipartite digraph in timeO(r(n)) usingp(n) processors can be used to check the existence of a perfect matching in a bipartite graph in timeO(r(n)+n 2 /p(n)) usingp(n) processors. Hence, our problem belongs to the class NC if and only if perfect matching in bipartite graphs belongs to NC. We also consider the problem of finding a hamiltonian path in a semicomplete bipartite digraph.  相似文献   

11.
We present a novel distributed algorithm for the maximal independent set problem (This is an extended journal version of Schneider and Wattenhofer in Twenty-seventh annual ACM SIGACT-SIGOPS symposium on principles of distributed computing, 2008). On bounded-independence graphs our deterministic algorithm finishes in O(log* n) time, n being the number of nodes. In light of Linial’s Ω(log* n) lower bound our algorithm is asymptotically optimal. Furthermore, it solves the connected dominating set problem for unit disk graphs in O(log* n) time, exponentially faster than the state-of-the-art algorithm. With a new extension our algorithm also computes a δ + 1 coloring and a maximal matching in O(log* n) time, where δ is the maximum degree of the graph.  相似文献   

12.
The 3-domatic number problem asks whether a given graph can be partitioned into three dominating sets. We prove that this problem can be solved by a deterministic algorithm in time n2.695 (up to polynomial factors) and in polynomial space. This result improves the previous bound of n2.8805, which is due to Björklund and Husfeldt. To prove our result, we combine an algorithm by Fomin et al. with Yamamoto's algorithm for the satisfiability problem. In addition, we show that the 3-domatic number problem can be solved for graphs G with bounded maximum degree Δ(G) by a randomized polynomial-space algorithm, whose running time is better than the previous bound due to Riege and Rothe whenever Δ(G)?5. Our new randomized algorithm employs Schöning's approach to constraint satisfaction problems.  相似文献   

13.
The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application of the decomposition, we show an O(n) time and space algorithm for finding a longest path in a bipartite permutation graph.  相似文献   

14.
Let σ′(n) denote the number of all strongly connected graphs on the n-element set. We prove that σ′(n)?2n2·(1−n(n−1)/2n−1). Hence the algorithm computing a transitive closure by a reduction to acyclic graphs has the expected time O(n2), under the assumption of uniform distribution of input graphs. Furthermore, we present a new algorithm constructing the transitive closure of an acyclic graph.  相似文献   

15.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

16.
A graph G is said to be a bicluster graph if G is a disjoint union of bicliques (complete bipartite subgraphs), and a cluster graph if G is a disjoint union of cliques (complete subgraphs). In this work, we study the parameterized versions of the NP-hard Bicluster Graph Editing and Cluster Graph Editing problems. The former consists of obtaining a bicluster graph by making the minimum number of modifications in the edge set of an input bipartite graph. When at most k modifications are allowed (Bicluster(k) Graph Editing problem), this problem is FPT, and can be solved in O(4 k nm) time by a standard search tree algorithm. We develop an algorithm of time complexity O(4 k +n+m), which uses a strategy based on modular decomposition techniques; we slightly generalize the original problem as the input graph is not necessarily bipartite. The algorithm first builds a problem kernel with O(k 2) vertices in O(n+m) time, and then applies a bounded search tree. We also show how this strategy based on modular decomposition leads to a new way of obtaining a problem kernel with O(k 2) vertices for the Cluster(k) Graph Editing problem, in O(n+m) time. This problem consists of obtaining a cluster graph by modifying at most k edges in an input graph. A previous FPT algorithm of time O(1.92 k +n 3) for this problem was presented by Gramm et al. (Theory Comput. Syst. 38(4), 373–392, 2005, Algorithmica 39(4), 321–347, 2004). In their solution, a problem kernel with O(k 2) vertices is built in O(n 3) time.  相似文献   

17.
We show that the Dominating Set problem parameterized by solution size is fixed-parameter tractable (FPT) in graphs that do not contain the claw (K1,3, the complete bipartite graph on four vertices where the two parts have one and three vertices, respectively) as an induced subgraph. We present an algorithm that uses 2O(k2)nO(1) time and polynomial space to decide whether a claw-free graph on n vertices has a dominating set of size at most k. Note that this parameterization of Dominating Set is W[2]-hard on the set of all graphs, and thus is unlikely to have an FPT algorithm for graphs in general.The most general class of graphs for which an FPT algorithm was previously known for this parameterization of Dominating Set is the class of Ki,j-free graphs, which exclude, for some fixed i,jN, the complete bipartite graph Ki,j as a subgraph. For i,j≥2, the class of claw-free graphs and any class of Ki,j-free graphs are not comparable with respect to set inclusion. We thus extend the range of graphs over which this parameterization of Dominating Set is known to be fixed-parameter tractable.We also show that, in some sense, it is the presence of the claw that makes this parameterization of the Dominating Set problem hard. More precisely, we show that for any t≥4, the Dominating Set problem parameterized by the solution size is W[2]-hard in graphs that exclude the t-claw K1,t as an induced subgraph. Our arguments also imply that the related Connected Dominating Set and Dominating Clique problems are W[2]-hard in these graph classes.Finally, we show that for any tN, the Clique problem parameterized by solution size, which is W[1]-hard on general graphs, is FPT in t-claw-free graphs. Our results add to the small and growing collection of FPT results for graph classes defined by excluded subgraphs, rather than by excluded minors.  相似文献   

18.
We give the first optimal algorithm that computes a minimum cycle basis for any weighted outerplanar graph. Specifically, for any n-node edge-weighted outerplanar graph G, we give an O(n)-time algorithm to obtain an O(n)-space compact representation Z(C) for a minimum cycle basis C of G. Each cycle in C can be computed from Z(C) in O(1) time per edge. Our result works for directed and undirected outerplanar graphs G.  相似文献   

19.
The maximum weight matching problem is a fundamental problem in graph theory with a variety of important applications. Recently Manne and Mjelde presented the first self-stabilizing algorithm computing a 2-approximation of the optimal solution. They established that their algorithm stabilizes after O(2n) (resp. O(3n)) moves under a central (resp. distributed) scheduler. This paper contributes a new analysis, improving these bounds considerably. In particular it is shown that the algorithm stabilizes after O(nm) moves under the central scheduler and that a modified version of the algorithm also stabilizes after O(nm) moves under the distributed scheduler. The paper presents a new proof technique based on graph reduction for analyzing the complexity of self-stabilizing algorithms.  相似文献   

20.
Mark Huber 《Algorithmica》2006,44(3):183-193
We present the first algorithm for generating random variates exactly uniformly from the set of perfect matchings of a bipartite graph with a polynomial expected running time over a nontrivial set of graphs. Previous Markov chain results obtain approximately uniform variates for arbitrary graphs in polynomial time, but their general running time is Θ(n10 (ln n)2). Other algorithms (such as Kasteleyn's O(n3) algorithm for planar graphs) concentrated on restricted versions of the problem. Our algorithm employs acceptance/rejection together with a new upper limit on the permanent of a form similar to Bregman's theorem. For graphs with 2n nodes, where the degree of every node is γn for a constant γ, the expected running time is O(n1.5 + .5/γ). Under these conditions, Jerrum and Sinclair showed that a Markov chain of Broder can generate approximately uniform variates in Θ(n4.5 + .5/γ ln n) time, making our algorithm significantly faster on this class of graphs. The problem of counting the number of perfect matchings in these types of graphs is # P complete. In addition, we give a 1 + σ approximation algorithm for finding the permanent of 0–1 matrices with identical row and column sums that runs in O(n1.5 + .5/γ (1/σ2) log (1/δ))$, where the probability that the output is within 1 + \sigma$ of the permanent is at least 1 – δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号