首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
In this paper, we consider the problem of finding ?-approximate frequent items over a sliding window of size N. A recent work by Lee and Ting (2006) [7] solves the problem by giving an algorithm that supports query and update time, and uses space. Their query time and memory usage are essentially optimal, but the update time is not. We give a new algorithm that supports O(1) update time with high probability while maintaining the query time and memory usage as .  相似文献   

3.
This paper addresses the total completion time minimization in a two-stage differentiation flowshop where the sequences of jobs per type are predetermined. The two-stage differentiation flowshop consists of a stage-1 common machine and m stage-2 parallel dedicated machines. The goal is to determine an optimal interleaved processing sequence of all jobs at the first stage. We propose an dynamic programming algorithm, where nk is the number of type-k jobs. The running time is polynomial when m is constant.  相似文献   

4.
5.
In this paper, we consider semi-online minimum makespan scheduling problem with reassignment on two identical machines. Two versions are discussed. In the first version, one can reassign the last job of one machine that is based on the problem proposed by Tan and Yu (2008) [1], in which case the last job of each machine is allowed to be reassigned. An optimal algorithm which has the same competitive ratio is presented. In the second version we consider the combination of the next two conditions: the total size of all jobs is known in advance and one can reassign the last job of one machine. For this problem an optimal algorithm with competitive ratio is also given.  相似文献   

6.
We give a randomized algorithm (the “Wedge Algorithm”) of competitiveness for any metrical task system on a uniform space of k points, for any k?2, where , the kth harmonic number. This algorithm has better competitiveness than the Irani-Seiden algorithm if k is smaller than 108. The algorithm is better by a factor of 2 if k<47.  相似文献   

7.
8.
9.
In this paper, we study the scheduling problem of jobs with multiple active intervals. Each job in the problem instance has disjoint active time intervals where it can be executed and a workload characterized by the required number of CPU cycles. Previously, people studied multiple interval job scheduling problem where each job must be assigned enough CPU cycles in one of its active intervals. We study a different practical version where the partial work done by the end of an interval remains valid and each job is considered finished if total CPU cycles assigned to it in all its active intervals reach the requirement. The goal is to find a feasible schedule that minimizes energy consumption. By adapting the algorithm for single interval jobs proposed in Yao, Demers and Shenker (1995) [1], one can still obtain an optimal schedule. However, the two phases in that algorithm (critical interval finding and scheduling the critical interval) can no longer be carried out directly. We present polynomial time algorithms to solve the two phases for jobs with multiple active intervals and therefore can still compute the optimal schedule in polynomial time.  相似文献   

10.
11.
We introduce a probabilistic sequential algorithm for stable sorting n uniformly distributed keys in an arbitrary range. The algorithm runs in linear time and sorts all but a very small fraction of the input sequences; the best previously known bound was . An EREW PRAM extension of this sequential algorithm sorts in O((n/p+lgp)lgn/lg(n/p+lgn)) time using p?n processors under the same probabilistic conditions. For a CRCW PRAM we improve upon the probabilistic bound of obtained by Rajasekaran and Sen to derive a bound. Additionally, we present experimental results for the sequential algorithm that establish the practicality of our method.  相似文献   

12.
The longest increasing circular subsequence (LICS) of a list is considered. A Monte Carlo algorithm to compute it is given which has worst case execution time O(n3/2logn) and storage requirement O(n). It is proved that the expected length μ(n) of the LICS satisfies . Numerical experiments with the algorithm suggest that .  相似文献   

13.
We present two approximation algorithms for the maximum weight matching problem that run in time . We give a simple and practical randomized algorithm and a somewhat more complicated deterministic algorithm. Both algorithms are exponentially faster in terms of ε than a recent algorithm by Drake and Hougardy. We also show that our algorithms can be generalized to find a 1−ε approximation to the maximum weight matching, for any ε>0.  相似文献   

14.
We consider a server location problem with only one server to move. In this paper we assume that a request is given as a region and that the service can be done anywhere inside the region. Namely, for each request an online algorithm chooses an arbitrary point in the region and moves the server there. Note that if every request is a single point and the server must exactly go there in the given order as conventional server problems, there is no choice for the online player and the problem is trivial. Our main result shows that if the region is a regular n-gon, the competitive ratio of the greedy algorithm is for odd n, and for even n. In particular for a square region, the greedy algorithm turns out to be optimal.  相似文献   

15.
16.
In this paper, we prove polynomial running time bounds for an Ant Colony Optimization (ACO) algorithm for the single-destination shortest path problem on directed acyclic graphs. More specifically, we show that the expected number of iterations required for an ACO-based algorithm with n ants is for graphs with n nodes and m edges, where ρ is an evaporation rate. This result can be modified to show that an ACO-based algorithm for One-Max with multiple ants converges in expected iterations, where n is the number of variables. This result stands in sharp contrast with that of Neumann and Witt, where a single-ant algorithm is shown to require an exponential running time if ρ=O(n−1−ε) for any ε>0.  相似文献   

17.
We present an O(n3)-time approximation algorithm for the maximum traveling salesman problem whose approximation ratio is asymptotically , where n is the number of vertices in the input complete edge-weighted (undirected) graph. We also present an O(n3)-time approximation algorithm for the metric case of the problem whose approximation ratio is asymptotically . Both algorithms improve on the previous bests.  相似文献   

18.
Let G=(V,E) be a finite graph, and be any function. The Local Search problem consists in finding a local minimum of the function f on G, that is a vertex v such that f(v) is not larger than the value of f on the neighbors of v in G. In this note, we first prove a separation theorem slightly stronger than the one of Gilbert, Hutchinson and Tarjan for graphs of constant genus. This result allows us to enhance a previously known deterministic algorithm for Local Search with query complexity , so that we obtain a deterministic query complexity of , where n is the size of G, d is its maximum degree, and g is its genus. We also give a quantum version of our algorithm, whose query complexity is of . Our deterministic and quantum algorithms have query complexities respectively smaller than the algorithm Randomized Steepest Descent of Aldous and Quantum Steepest Descent of Aaronson for large classes of graphs, including graphs of bounded genus and planar graphs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号