共查询到16条相似文献,搜索用时 109 毫秒
1.
提出了一种基于尺度间和尺度内相关性的平稳小波变换红外图像去噪方法。首先对红外图像进行离散平稳小波变换,分别对各个分解层的高频子带,利用不同尺度小波系数形成的系数向量,通过线性最小均方误差估计小波系数,获得各个高频子带的估计系数,再利用小波系数尺度内的邻域相关性对小波系数进行修正,然后通过小波反变换得到去噪图像。仿真结果表明,考虑尺度间和尺度内相关性的平稳小波红外图像去噪算法能有效地去除红外图像噪声,在信噪比和视觉质量上要优于单纯考虑尺度间相关性的去噪方法。 相似文献
2.
为了去除图像的噪声,提出了一种基于尺度乘积和尺度相关性的平稳小波交换图像去噪方法.在传统小波系数估计的基础上,考虑到尺度间的相关性,利用不同尺度小波系数形成的系数向量,通过线性最小均方误差估计小波系数,获得各个高频子带的估计系数.针对单纯利用尺度间相关性去噪造成的图像边缘失真问题,在不同尺度小波系数形成的系数向量中引入了小波系数乘积,不但可以较好区分边缘信息和噪声信息,而且提高了原有算法的去噪能力.仿真结果表明,该图像去噪算法能有效去除图像噪声,较好保持图像边缘,在峰值信噪比和视觉质量上都有较大提高. 相似文献
3.
4.
小波图像去噪已经成为目前图像去噪的主要方法之一。本文介绍了小波阈值去噪的基本原理,并将其应用于红外图像去噪。实验结果表明,该算法优于传统滤波去噪方法,能有效地抑制噪声,可用来对红外图像做进一步的分析与处理。 相似文献
5.
基于平稳多小波变换的红外图像噪声抑制方法 总被引:7,自引:3,他引:7
提出了一种平稳多小波变换方法,该方法结合多小波和平稳小波变换在信号去噪方面的优点,给出了二维图像平稳多小波变换的mallat分解重构算法,并对红外图像的平稳多小波变换系数进行阚值处理实现图像去噪,仿真结果表明,相对于平稳标量小波变换和多小波的噪声抑制方法,此方法对噪声有更好的抑制作用,并尽可能多的保持目标的特征和细节. 相似文献
6.
基于TLS的正交小波变换红外图像去噪 总被引:3,自引:0,他引:3
提出了一种基于总体最小二乘的正交小波变换红外图像去噪算法。对红外图像进行离散正交小波变换,分别对各个分解层的高频子带,通过总体最小二乘算法估计小波系数,获得各个高频子带信号的估计系数,然后通过正交小波反变换得到去噪图像。仿真结果表明,该红外图像去噪算法能有效去除加性红外图像噪声,在信噪比、直方图匹配等方面都有较大改善,并获得了良好的主观视觉效果。 相似文献
7.
8.
基于小波变换和改进SVD的红外图像去噪 总被引:5,自引:2,他引:3
针对小波变换红外图像去噪需要已知噪声先验知识的缺点,提出了一种基于分块奇异值分解的正交小波变换红外图像去噪新算法。首先对红外图像进行离散正交小波变换,并对高频图像采用改进的分块奇异值分解估计小波系数,其中对奇异向量采用傅里叶变换进行了修正;最后将低频图像与估计的高频图像通过小波反变换得到去噪图像。仿真结果表明,该图像去噪算法能在无噪声先验知识条件下有效去除图像噪声,信噪比有了明显提高,并获得了良好的主观视觉效果。 相似文献
9.
10.
基于平稳小波变换的图像去噪方法 总被引:9,自引:1,他引:9
针对传统正交小波变换在图像去噪时存在的边缘失真,提出了一种基于平稳小波变换的图像去噪方法.使用系数关联法将图像小波分解后的高频分量像素标记为噪声和边缘,如果小波系数被标记为边缘,则保持其系数不变,否则采用基于邻域的方法进行系数收缩.当噪声方差较大时,收缩后最小尺度的高频分量中会存在一些孤立的亮点或暗点,借助次大尺度高频分量将其去除,对处理后的小波系数进行平稳小波反变换得到去噪图像.实验结果表明,本文方法能够在去除噪声的同时较好地保持图像的边缘,是一种有效的图像去噪方法. 相似文献
11.
基于小波变换的红外图像去噪 总被引:4,自引:7,他引:4
提出一种基于新型阈值函数的小波域红外图像去噪法,其阈值函数表达式简单且连续,既克服了硬阈值函数不连续的缺点,又克服了软阈值函数中估计小波系数与含噪小波系数间存在恒定偏差的缺陷。同时新的阈值函数还有效地利用了小波系数的成串性,即在小波系数的估计计算中考虑了邻域小波系数的大小。仿真结果表明,在去噪红外图像视觉效果和峰值信噪比两个方面,文中提出的去噪法优于已有的各种门限去噪法和Matlab-wiener2滤波算法。 相似文献
12.
13.
14.
15.
提出了一种基于正交小波变换的图像去噪方法,首先利用离散小波对图像信号按Mallat算法进行分解,然后采用软闽值与小波重构的算法进行去噪。深入研究了小波变换中的图像分解与重构的Mallat算法,详细介绍了正交小波变换中阈值的选取,并进行了实验研究。实验结果表明,该方法可以有效去除噪声,并保留了图像细节部分的有用信息。 相似文献
16.
粒子滤波(PF)非常适合处理非高斯状态空间模型的滤波问题,而SAR图像的非高斯降斑算法正是粒子滤波的一个有效应用,本文在平稳小波变换(SWT)域上提出了一种基于马尔可夫随机场(MRF)的改进PF的SAR图像降斑算法.新算法首先分析验证了SAR图像在SWT域比在DWT域中利用广义高斯分布(GGD)建模更为精确;然后针对基本PF降斑算法中的粒子整体权重偏差问题,引入MRF重新定义粒子权重,并通过权重更新粒子的采样区间以优化粒子分布;最后为了提高本文降斑算法的实时性,依据小波系数的局部统计特性把图像分为平滑和边缘进行分区域处理.本文针对模拟SAR图像和实测SAR图像进行了仿真,仿真结果和分析表明降斑后的图像能够在去除噪声的同时较好的保持图像的边缘和纹理结构特征,而且分区域处理有效地提高了算法的效率. 相似文献