首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper focuses on a new three-phase high power current-fed dc/dc converter with an active clamp. A three-phase dc/dc converter with high efficiency and voltage boosting capability is designed for use in the interface between a low-voltage fuel-cell source and a high-voltage dc bus for inverters. Zero-voltage switching in all active switches is achieved through using a common active clamp branch, and zero current switching in the rectifier diodes is achieved through discontinuous current conduction in the secondary side. Further, the converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Moreover, a delta-delta connection on the three-phase transformer provides parallel current paths and reduces conduction losses in the transformer windings. An efficiency of above 93% is achieved through both improvements in the switching and through reducing conduction losses. A high voltage ratio is achieved by combining inherent voltage boost characteristics of the current-fed converter and the transformer turns ratio. The proposed converter and three-phase PWM strategy is analyzed, simulated, and implemented in hardware. Experimental results are obtained on a 500-W prototype unit, with all of the design verified and analyzed.   相似文献   

2.
This paper proposes a new high-power factor three-phase AC-DC power converter, which is composed of a line interphase transformer (LIT) and two three-phase diode rectifiers, followed by a pulsewidth modulation (PWM) DC-DC boost power converter. The active switch of the boost converter is gated at a constant frequency such that the AC input current is discontinuous. This procedure provides an input current shaping without the third, fifth and seventh harmonics. The currents that flow through the LIT and boost inductors have such a high-switching frequency that ferrite cores with a small size can be utilized. In addition, the output voltage is regulated by PWM to compensate for line voltage variations and load change. Theoretical analysis, design procedure and example, along with experimental results taken from a 6 kW laboratory prototype are given  相似文献   

3.
This paper describes a new approach to select the optimum sinewave pulsewidth modulation (PWM) patterns suitable for a large-capacity current-fed active PWM power converter and a practical design procedure to determine circuit constants of a low-pass filter connected to suppress higher line current harmonics flowing into the utility-grid AC power source. A feasible test is implemented by building a prototype 500 kW three-phase current-fed PWM power converter which is designed and controlled on the basis of the proposed considerations. It is verified from a practical point of view that these new conceptual considerations are more effective and acceptable to minimize higher harmonic current components flowing into the utility-grid AC power source. This experimental setup provides highly efficient steady-state characteristics of the current-fed three-phase PWM power converter under the operating condition of a unity power factor correction and sinewave line current shaping schemes. Furthermore, this unique optimum PWM pattern derived from the theoretical method proposed here is conveniently applicable to a voltage-fed three-phase PWM converter. It is verified that this optimum PWM pattern provides excellent switching performance with a lower switching frequency mode than the conventional carrier-based PWM scheme  相似文献   

4.
A reduced-order (RO) small-signal model of three-phase pulse-width-modulation (PWM) rectifiers is proposed. By combining the PWM switch model and equivalent multimodule model techniques in DC-DC converters, a three-phase rectifier can be modeled as a DC-DC converter with equivalent power capability and small-signal characteristics. This model reduces the system order to two and greatly simplifies the control design and system analysis of three-phase converters. In this paper, the proposed model is also used for control design and for system interaction analysis on the three-phase interface of a boost rectifier. The RO model is verified with the d-q model, switching-model simulation, and experimental results  相似文献   

5.
In this paper, an interleaved soft-switching converter with ripple-current cancellation is presented to achieve zero- voltage-switching (ZVS) turn-on and load current sharing. In order to achieve ZVS turn-on, an active snubber is connected in parallel with the primary winding of the transformer. The energy stored in the transformer leakage inductance and magnetizing inductance can be recovered so that the peak voltage stress of switching devices is limited. The resonance at the transition interval is used to realize ZVS turn-on of all switches. In order to achieve three-level pulsewidth-modulation (PWM) scheme, an addition fast-recovery diode is used in the converter. Three-level PWM scheme can reduce the ac ripple current on the output inductor such that the output inductor can be reduced. The current-doubler rectifier is adopted in the secondary side of the transformer to reduce the transformer secondary-winding current and output voltage ripple by canceling the current ripple of two output inductors. The output voltage is controlled at the desired value using the interleaved PWM scheme. These features make the proposed converter suitable for the dc-dc converter with high output current. The operation principles, steady state analysis, and design equations of the proposed converter are provided in detail. Finally, experiments based on a 600-W (12 V/50 A) prototype are provided to verify the effectiveness and feasibility of the proposed converter.  相似文献   

6.
This paper proposes advanced control of a three-phase three-level neutral-point-clamped pulsewidth-modulated (PWM) converter connecting a permanent-magnet synchronous generator to a grid. The control scheme is mainly based on active and reactive power loops and contains the following additional blocks: virtual flux and filter-capacitor voltage estimators for sensorless operation, active damping (AD) of possible resonances in the LCL filter that connects the converter to the grid, and a PWM modulator with dc-link voltage balancing and minimization of switching losses. It is shown that the proposed control method exhibits several features such as sensorless operation, robust algorithm, minimization of switching losses, and simple tuning procedure of AD. The simulation and experimental results have proven an excellent performance and verified the validity of the proposed system.  相似文献   

7.
This paper presents a novel prototype of three-phase current-fed PWM converter with a switched capacitor type resonant dc link snubber circuit, which can basically operate under a principle of zero current soft switching commutation. The optimum PWM pattern-based control scheme proposed by the authors is effectively applied for this active converter. In this paper, the steady-state operating principle of a new converter circuit treated here is described. The practical design procedure of this converter is discussed from a theoretical point of view. The feasible experiment to confirm zero current soft switching commutation of this converter is concretely implemented and evaluated herein.  相似文献   

8.
介绍了一种基于三相PWM电压源变换器(PWM VSC)的能量回馈式蓄电池恒流放电装置。建立了PWM VSC在同步旋转坐标系下的复数矢量传递函数模型,设计了交流电流复数PI控制器,并基于功率平衡系建立了放电电流的数学模型,提出了系统的控制方案。实验结果表明装置能够实现蓄电池的高精度恒流放电,而且交流侧电流波形好,功率因数高。  相似文献   

9.
In high-performance three-phase pulsewidth-modulated (PWM) converter systems used in generator and motor drives, failure of current sensors will directly interrupt the system performance, and will even cause disastrous consequences. Redundancy in design is one of the popular choices to overcome this issue. However, this usually leads to an undesirable increase in size and cost. This letter presents two novel model-independent current reconstruction methods for three-phase PWM converter systems based on space vector modulation. Using the proposed sensor placement and software algorithm, phase currents within a three-phase converter can be reconstructed to an acceptable level of accuracy under single-survived-sensor ($S^3$) scenario. A hardware prototype is built and fault tolerant algorithm is implemented using a DSP (TMS320F2812). Experiments are conducted under worst-case scenario to verify the flexibility of sensor placement/converter layout and software algorithm.   相似文献   

10.
In this paper, a new current controller that guarantees the fastest transient response is proposed. The basic concept is to find the optimal control voltage for tracking the reference current with minimum time under the voltage limit constraint. Though this minimum time control concept is also applicable to all the machine drive systems, this paper focuses on the current regulation in the three-phase pulse width modulation (PWM) converter. In the simulation and experimental results, it is observed that the proposed controller has much less transient time than the conventional synchronous PI regulator and the performance of the DC link voltage control is also greatly improved with the proposed current controller  相似文献   

11.
建立了三相电压型PWM整流器在三相静止坐标系和两相同步旋转坐标系下的数学模型,将双闭环工程设计方法应用于PWM整流器,研究了其前馈解耦控制策略。在此基础上结合空间矢量调制(SVPWM)的算法,设计了三相电压型PWM整流器控制系统,并在Matlab的Simulink中进行了系统仿真。仿真结果表明,设计方法可行,具有良好的动静态性能,实现了单位功率因数。  相似文献   

12.
In this paper a voltage modulation method based on a triangular carrier wave for the three-phase four-leg voltage source converter is described. The four-leg converter can produce three output voltages independently with one additional leg. The proposed modulation method for the four-leg converter can be implemented with a single carrier by a simple but useful "offset voltage" concept. The method is equivalent to the so called three-dimensional space vector PWM method, but its implementation is much easier. The maximum magnitude of the balanced three-phase voltage and the maximum magnitude of zero sequence voltage, which can be synthesized simultaneously, are derived. The feasibility of the proposed modulation technique is verified by computer simulation and experimental results. These results show that a proposed carrier-based pulsewidth modulation (PWM) technique can be easily implemented without conventional computational burden.  相似文献   

13.
An interleaved three-phase forward converter using an integrated transformer is proposed in this paper. This type of converter has the attractive features of flexible voltage conversion ratio, high output current (due to the parallel connection of outputs), near-zero output-current ripple (due to the output-current-ripple cancellation), fast transient response (due to the small effective output-filtering inductance), and is particularly suitable for high-output-current and low-output-voltage applications such as telecommunication and computer systems. The integrated transformer of the proposed converter consists of three step-down transformers on a single magnetic core. The z-parameter (gyrator) model and the equivalent-circuit model of the integrated transformer are derived. Based on the equivalent-circuit model, the principle of operation of the proposed converter is explained. The analysis and design criteria of the basic circuit, the operation of the regenerative LC snubber circuit, the simulation, and experimental verification are also described.  相似文献   

14.
A digitally controlled switch mode power supply based on matrix converter   总被引:3,自引:0,他引:3  
High power telecommunication power supply systems consist of a three-phase switch mode rectifier followed by a dc/dc converter to supply loads at -48 V dc. These rectifiers draw significant harmonic currents from the utility, resulting in poor input power factor with high total harmonic distortion (THD). In this paper, a digitally controlled three-phase switch mode power supply based on a matrix converter is proposed for telecommunication applications. In the proposed approach, the matrix converter directly converts the low frequency (50/60Hz, three-phase) input to a high frequency (10/20kHz, one-phase) ac output without a dc-link. The output of the matrix converter is then processed via a high frequency isolation transformer to produce -48V dc. Digital control of the system ensures that the output voltage is regulated and the input currents are of high quality under varying load conditions. Due to the absence of dc-link electrolytic capacitors, power density of the proposed rectifier is expected to be higher. Analysis, design example and experimental results are presented from a three-phase 208-V, 1.5-kW laboratory prototype converter.  相似文献   

15.
Slight hardware and algorithm modifications as well as a higher power ratio of a three-phase pulsewidth-modulation (PWM) rectifier make compensation of neighboring nonlinear power load possible. The active filtering function enlarges the functionality of PWM rectifiers, which decreases the cost of additional installation of compensating equipment. It gives a chance to fulfill both shunt active filter (SAF) and PWM rectifier tasks in a multidrive system by one advanced converter. Thanks to the idea of virtual flux, the direct power control space-vector-modulated (DPC-SVM) and new synchronous double reference frame phase-locked loop approach, the control system is resistant to a majority of line voltage disturbances. This assures proper operation of the system for abnormal and failure grid conditions. Simulation and experimental results have proven excellent performance and verify the validity of the proposed system.  相似文献   

16.
A novel active power quality compensator topology for electrified railway   总被引:1,自引:0,他引:1  
To improve the power quality of traction power system, a novel active power quality compensator (APQC) and a new compensating currents detection method are proposed. The APQC consists of a three-phase voltage source converter and a Scott transformer. The Scott transformer, taken as an isolation transformer, not only connects the three-phase converter to the traction power system, but also converts the traction power system to a nearly balanced three-phase power system. Therefore, a general three-phase converter could be used in APQC. Regarding the traction substation as a compensating object, the power quality of a traction substation can be improved integrally. Simulation and prototype experimental results show that the proposed APQC is able to compensate reactive power, harmonic, and negative-sequence currents in two feeders of a traction substation.  相似文献   

17.
This paper presents a post-regulator based on the use of a controlled transformer, which adds or subtracts an additional voltage to the output filter of a converter in order to regulate its output voltage. So, their actuation is complementary to that of more known post-regulators, such as the magnetic amplifier (magamp) and synchronous switch post-regulator (SSPR), because the regulation is achieved by controlling the voltage across the filter inductor instead of its charge time. Besides, the post-regulator processes the power in parallel to the one flowing from input to output and only handles a percentage of it. The post-regulation by controlled transformer is suitable of being employed in any isolated PWM power converter and combines a good efficiency and the easiness of design of classical switched power supplies. The work describes the post-regulation strategy for obtaining two outputs independently regulated, and presents a model to obtain the control transfer function and the cross-impedance expressions.  相似文献   

18.
A novel zero-voltage and zero-current switching (ZVZCS) full-bridge phase-shifted pulsewidth modulation (PWM) converter using insulated gate bipolar transistors (IGBTs) with auxiliary transformer is proposed to improve the properties of the previously presented converters. ZVZCS for all power switches is achieved for full load range from no-load to short circuit by adding active energy recovery snubber and auxiliary circuits. The principle of operation is explained and analyzed and experimental results are presented. The features and design considerations of the converter are verified on a 3-kW, 50-kHz IGBT based experimental circuit.  相似文献   

19.
A novel zero-current-zero-voltage transition (ZCZVT) forward converter with synchronous rectification (SR) is presented in this paper. The proposed converter is operating at 300kHz and processes the features of both zero-voltage transition (ZVT) at turn on and zero-current transition (ZCT) at turn off for the main switch. The auxiliary switch also achieves zero-current switching (ZCS). The flux of transformer can be reset without tertiary winding. The steady-state analysis and design considerations are investigated in detail in this work. Moreover, a self-driven synchronous rectification is also added to the ZCZVT forward converter to reduce the conduction losses of the output rectifier. For 48-V input and 12-V 100-W output, a prototype of the proposed converter for 300-kHz switching is built to verify the theoretical analysis. Finally, the power losses are well estimated. The overall efficiency of the proposed converter is achieved at 89% at full load.  相似文献   

20.
This paper presents a transformer‐based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)‐input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer‐based self‐startup mode (TSM) and an inductor‐based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a 0.18‐μm CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号