首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
采用角依赖X射线光电子谱技术(ADXPS)对高温氧化SiO2/4H-SiC(0001)界面过渡区的组成、成分分布等进行了研究.通过控制1%浓度HF酸刻蚀氧化膜的时间,制备出超薄膜(1~1.5nm)样品,同时借助标准物对照分析,提高了谱峰分解的可靠性.结果显示,高温氧化形成的SiO2/4H-SiC(0001)界面,同时存在着Si1 ,Si2 ,Si33 3种低值氧化物,变角分析表明,一个分层模型适合于描述该过渡区的成分分布.建立了过渡区的原子级模型并计算了氧化膜厚度.结合过渡区各成分含量的变化及电容-电压(C-V)测试分析,揭示了过渡区成分与界面态的直接关系.  相似文献   

2.
采用角依赖X射线光电子谱技术(ADXPS)对高温氧化SiO2/4H-SiC(0001)界面过渡区的组成、成分分布等进行了研究.通过控制1%浓度HF酸刻蚀氧化膜的时间,制备出超薄膜(1~1.5nm)样品,同时借助标准物对照分析,提高了谱峰分解的可靠性.结果显示,高温氧化形成的SiO2/4H-SiC(0001)界面,同时存在着Si1+,Si2+,Si33+3种低值氧化物,变角分析表明,一个分层模型适合于描述该过渡区的成分分布.建立了过渡区的原子级模型并计算了氧化膜厚度.结合过渡区各成分含量的变化及电容-电压(C-V)测试分析,揭示了过渡区成分与界面态的直接关系.  相似文献   

3.
采用等离子体增强化学气相沉积(PECVD)低温处理和高温快速退火的技术,研究了退火条件对SiO2/4H-SiC界面态密度的影响.在n型4H-SiC外延片上高温干氧氧化50 nm厚的SiO2层并经N2原位退火,随后在PECVD炉中对样品进行350℃退火气氛为PH3,N2O,H2和N2的后退火处理,之后进行高温快速退火,最后制备Al电极4H-SiC MOS电容.I-V和C-V测试结果表明,各样品的氧化层击穿场强均大于9 MV/cm,PH3处理可以降低界面有效负电荷和近界面氧化层陷阱电荷,但PH3处理样品的界面态密度比N2O处理的结果要高.经N2O氛围PECVD后退火样品在距离导带0.2和0.4 eV处的界面态密度分别约为1.7× 1012和4×1011eV-1·cm-2,有望用于SiC MOSFET器件的栅氧处理.  相似文献   

4.
本文研究了高温(1300℃)氧化并在一氧化氮(NO)气体中进行氧化后退火方法对4H-SiC 金属-氧化物-半导体(MOS)电容的SiC/SiO2界面特性的影响,主要通过SiC MOS的电容-电压(C-V)特性详细讨论了NO退火时间和温度与SiO2/SiC界面特性的相互关系. 结果表明在NO气体中进行氧化后退火可明显降低界面态密度,并且界面态密度随着温度和时间的增加会进一步降低。 同时,与常规1200℃及以下氧化温度相比,1300℃下热生长的氧化层具有更低的界面态密度且显著缩短了氧化时间,节约了生产成本。  相似文献   

5.
本文对比了NO退火和磷掺杂两种栅钝化工艺,其中磷钝化采用了平面扩散源进行掺杂,通过C-V特性进行了4H-SiC/SiO2界面特性评价,使用Terman法分析计算获得距导带底0.2-0.4eV范围内界面态密度.结果表明引入磷比氮能更有效降低界面态密度,提高沟道载流子迁移率.其次,对比了两种栅钝化工艺制备的4H-SiC DMOSFET器件性能,实验表明采用磷钝化工艺处理的器件性能更优.最后,基于磷掺杂钝化工艺首次制备出击穿电压为1200V、导通电阻为20mΩ、漏源电流为75 A、阈值电压为2.4V的4H-SiC DMOSFET.  相似文献   

6.
提出了一种基于器件物理的4H-SiC n-MOSFET反型沟道电子迁移率模型.该模型包括了界面态、晶格、杂质以及表面粗糙等散射机制的影响,其中界面态散射机制考虑了载流子的屏蔽效应.利用此模型,研究了界面态、表面粗糙度等因素对迁移率的影响,模拟结果表明界面态和表面粗糙度是影响沟道电子迁移率的主要因素.其中,界面态密度决定了沟道电子迁移率的最大值,而表面粗糙散射则制约着高场下的电子迁移率.该模型能较好地应用于器件模拟.  相似文献   

7.
为研究退火温度对肖特基接触界面特性的影响,在不同温度下测试了不同退火温度处理的Mo/4H-SiC肖特基接触的I-V及C-V特性.根据金属-绝缘层-半导体(MIS)结构二极管模型理论,认为在金属与半导体间存在薄介质层,通过估算介质层电容值,得到了肖特基接触界面态密度(N88)的能级分布情况,N8s约为1012 eV-1·cm-2量级.退火温度升高,N8s的能级分布靠近导带底;测试温度升高,Ns8增加且其能级分布远离导带底.利用X射线光电子能谱(XPS)分析表征肖特基接触界面态化学组分,分析结果证实接触界面存在SiO.SiO组分随退火温度的升高而减少,在退火温度为500℃及以上时检测到Mo-C成分,说明Mo与4H-SiC发生反应.  相似文献   

8.
SiO_2/SiC界面对4H-SiC n-MOSFET反型沟道电子迁移率的影响   总被引:3,自引:2,他引:3  
提出了一种基于器件物理的4 H- Si C n- MOSFET反型沟道电子迁移率模型.该模型包括了界面态、晶格、杂质以及表面粗糙等散射机制的影响,其中界面态散射机制考虑了载流子的屏蔽效应.利用此模型,研究了界面态、表面粗糙度等因素对迁移率的影响,模拟结果表明界面态和表面粗糙度是影响沟道电子迁移率的主要因素.其中,界面态密度决定了沟道电子迁移率的最大值,而表面粗糙散射则制约着高场下的电子迁移率.该模型能较好地应用于器件模拟.  相似文献   

9.
10.
阐述4H-SiC晶圆的Si面上通过CVD淀积与低温热氧化生长的双层栅氧化物结构,在高温氮气环境下可降低4H-SiC/SiO2界面的高密度界面缺陷。采用PECVD淀积一层均匀的SiO2膜后,通过热氧化工艺在淀积膜与4H-SiC/SiO2间生长一层很薄的氧化物过渡层。根据不同温区间热氧化温度形成的SiO2膜晶型不同,改变界面中氮气退火过程中氮元素的引入,从而钝化4H-SiC/SiO2的界面缺陷。  相似文献   

11.
用XPS法研究SiO_2/4H-SiC界面的组成   总被引:1,自引:0,他引:1  
利用X射线光电子谱(XPS)研究了高温氧化形成的SiO2/4H-SiC界面的化学组成.获取低浓度HF酸刻蚀速度基础上制备出超薄氧化膜(1~1.5 nm)样品,并借助标准物对照法辅助谱峰分析.结果表明,高温氧化SiO2/4H-SiC界面,类石墨碳较多,除Si1 成分外,还存在Si2 和Si3 两种低值氧化物.三种工艺处理后界面成分含量的对比,指出界面成分可通过合理工艺有效控制,以C-V测试曲线印证了界面成分减少对电学特性的改善.  相似文献   

12.
提出了适用于电路模拟的4H-SiC n-MOSFET高温沟道电子迁移率模型.在新模型中,引入了横向有效电场和表面粗糙散射的温度依赖性,电子饱和漂移速度与横向有效电场和温度的关系,以及改进的界面陷阱电荷和固定氧化物电荷库仑散射模型等因素.采用与温度-阈值电压实验曲线拟合的方法,确定了界面态参数和固定氧化物电荷.基于新迁移率模型的模拟结果与实验吻合.  相似文献   

13.
提出了适用于电路模拟的4H-SiC n-MOSFET高温沟道电子迁移率模型.在新模型中,引入了横向有效电场和表面粗糙散射的温度依赖性,电子饱和漂移速度与横向有效电场和温度的关系,以及改进的界面陷阱电荷和固定氧化物电荷库仑散射模型等因素.采用与温度-阈值电压实验曲线拟合的方法,确定了界面态参数和固定氧化物电荷.基于新迁移率模型的模拟结果与实验吻合.  相似文献   

14.
宁瑾  刘忠立  高见头 《半导体学报》2005,26(13):140-142
在n型4H-SiC外延层上,采用H2, O2合成的办法,热生长30nm的SiO2层,并制备出Al栅MOS电容,完成了C-V特性的测试和分析工作,根据测试结果得出了SiO2与4H-SiC外延层的界面特性,并计算出n型4H-SiC外延层的掺杂浓度. 结果表明H2, O2合成热生长的SiO2与4H-SiC外延层之间具有较好的界面特性,界面态密度较小. n型4H-SiC外延层的掺杂均匀,浓度为1.84e17cm-3.  相似文献   

15.
4H-SiC SBD和JBS退火研究   总被引:1,自引:0,他引:1  
在4H-SiC外延材料上制备了SBD和JBS器件,研究并分析了退火温度对这两种器件正反向特性的影响。结果表明,低于350℃退火可同时提高SBD和JBS的正反向特性。当退火温度高于350℃时,二者的正向特性都出现退化,SBD退化较JBS更为严重。JBS阻断电压随退火温度升高而增大,在退火温度高于450℃时增加趋势变缓。SBD阻断电压随退火温度升高先升后降,在500℃退火时达到一个最大值。可见一定程度的退火有助于提高4H-SiCSBD和JBS器件的正反向特性,但须考虑其对正反向特性的不同影响。综合而言,退火优化后JBS优于SBD器件性能。  相似文献   

16.
成功设计并制造了击穿电压超过3300V 的4H-SiC MOSFET。通过数字仿真优化了漂移层和DMOSFET有源区参数。漂移层N型外延厚度为33微米并且掺杂浓度为2.5E15cm-3。器件采用浮空场限制环作为终端。当栅极电压为20V,漏极电压为2.5V时,漏极电流为5A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号