首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
孙昕  陈莹  陈丽  李斌 《半导体技术》2017,42(8):569-573,597
采用稳懋公司150 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了一款5 ~ 10 GHz单片微波集成电路(MMIC)低噪声放大器(LNA).该LNA采用三级级联结构,且每一级采用相同的偏压条件,电路的低频工作端依靠电容反馈,高频工作端依靠电阻反馈调节阻抗匹配,从而实现宽带匹配,芯片面积为2.5 mm×1 mm.测试结果表明,工作频率为5~10 GHz,漏极电压为2.3V,工作电流为70 mA时,LNA的功率增益达到35 dB,平均噪声温度为82 K,在90%工作频段内输入输出回波损耗优于-15 dB,1 dB压缩点输出功率为10.3 dBm,仿真结果与实验结果具有很好的一致性.  相似文献   

2.
采用中国电子科技集团公司第十三研究所的GaAs PHEMT低噪声工艺,设计了一款2~4 GHz微波单片集成电路低噪声放大器(MMIC LNA)。该低噪声放大器采用两级级联的电路结构,第一级折中考虑了低噪声放大器的最佳噪声和最大增益,采用源极串联负反馈和输入匹配电路,实现噪声匹配和输入匹配。第二级采用串联、并联负反馈,提高电路的增益平坦度和稳定性。每一级采用自偏电路设计,实现单电源供电。MMIC芯片测试结果为:工作频率为2~4 GHz,噪声系数小于1.0 dB,增益大于27.5 dB,1 dB压缩点输出功率大于18 dBm,输入、输出回波损耗小于-10 dB,芯片面积为2.2 mm×1.2 mm。  相似文献   

3.
报道了基于0.25μm GaAs PHEMT工艺的2.8~4.2GHz MMIC低噪声放大器,详细介绍和分析了低噪声放大器的器件基础和设计原理,设计采用源极串联电感负反馈方法使输入阻抗共轭匹配和最小噪声匹配趋于一致,偏置网络采用自偏置栅压、单电源供电,并用ADS软件仿真。电路评估板选用Rogers RO4350B,在2.8~4.2GHz频段内测得增益大于20dB、增益平坦度小于2.5dB、噪声系数小于2.3dB、输入输出驻波比小于2.0。  相似文献   

4.
基于0.15μm GaN HEMT工艺,设计并实现了一款超宽带毫米波GaN低噪声放大器(LNA)微波单片集成电路(MMIC)。该放大器采用4级级联结构,其输入和输出端均采用5阶匹配网络,提高了放大器的匹配带宽;由微带线、短截线和电容组成的无电阻输入匹配网络减小了输入热噪声,优化了电路的噪声系数;在级间匹配网络中引入电阻元件,通过降低Q值扩展电路工作带宽。采用SiC衬底0.15μm AlGaN/GaN HEMT工艺进行流片,在片测试结果表明,在频率14~34 GHz时,该LNA的增益为(18±1)dB、噪声系数小于4.5 dB,在频率为39 GHz时1 dB压缩点输出功率为19 dBm,最大输入承受功率为30 dBm,相对工作带宽大于100%。研制的MMIC LNA面积为1.71 mm2,功耗为1.05 W。  相似文献   

5.
采用SiC衬底0.25 μm AlGaN/GaN高电子迁移率晶体管(HEMT)工艺,研制了一款X波段GaN单片微波集成电路(MMIC)低噪声放大器(LNA).放大器采用三级级联拓扑,第一级采用源极电感匹配,在确保良好的输入回波损耗的同时优化放大器噪声系数;第三级采用电阻电容串联负反馈匹配,在尽量降低噪声系数的前提下,保证良好的增益平坦度、输出端口回波损耗以及输出功率.在片测试表明,在10 V漏级电压、-2 V栅极电压偏置下,放大器静态电流为60 mA,8~12 GHz内增益为22.5 dB,增益平坦度为±1.2 dB,输入输出回波损耗均优于-11 dB,噪声系数小于1.55 dB,1 dB增益压缩点输出功率大于11.9 dBm,其芯片尺寸为2.2 mm×1.1 mm.装配测试表明,噪声系数典型值小于1.6 dB,可承受33 dBm连续波输入功率.该X波段GaN低噪声放大器与高功率放大器工艺兼容,可以实现多功能集成,具有广阔的工程应用前景.  相似文献   

6.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

7.
8.
9.
报道了具有高增益自偏结构的低噪声S波段MMIC宽带低噪声高增益放大器.该放大器是采用国际先进的0.25μm PHEMT工艺技术加工而成.电路设计采用了两级级联负反馈结构,并采用电阻自偏压技术,单电源供电,使用方便,可靠性高,一致性好.MMIC芯片测试指标如下:在1.9~4.2GHz频率范围内,输入输出驻波小于2.0,线性功率增益达30dB,带内增益平坦度为±0.7dB,噪声系数小于2.7dB.芯片尺寸:1mm×2mm×0.1mm.这是国内报道的增益最高,芯片面积最小的S波段放大器.  相似文献   

10.
高增益自偏S波段MMIC低噪声放大器   总被引:2,自引:2,他引:2  
报道了具有高增益自偏结构的低噪声S波段MMIC宽带低噪声高增益放大器.该放大器是采用国际先进的0.25μm PHEMT工艺技术加工而成.电路设计采用了两级级联负反馈结构,并采用电阻自偏压技术,单电源供电,使用方便,可靠性高,一致性好.MMIC芯片测试指标如下:在1.9~4.2GHz频率范围内,输入输出驻波小于2.0,线性功率增益达30dB,带内增益平坦度为±0.7dB,噪声系数小于2.7dB.芯片尺寸:1mm×2mm×0.1mm.这是国内报道的增益最高,芯片面积最小的S波段放大器.  相似文献   

11.
X波段GaN单片电路低噪声放大器   总被引:1,自引:1,他引:0  
采用0.25μm GaN HEMT制备工艺在AlGaN/GaN异质结材料上研制了高性能X波段GaN单片电路低噪声放大器.GaN低噪声单片电路采取两级微带线结构,10V偏压下芯片在X波段范围内获得了低于2.2 dB的噪声系数,增益达到18 dB以上,耐受功率达到了27 dBm.在耐受功率测试中发现GaN低噪声HEMT器件...  相似文献   

12.
研制了一款60~90 GHz功率放大器单片微波集成电路(MMIC),该MMIC采用平衡式放大结构,在较宽的频带内获得了平坦的增益、较高的输出功率及良好的输入输出驻波比(VSWR)。采用GaAs赝配高电子迁移率晶体管(PHEMT)标准工艺进行了流片,在片测试结果表明,在栅极电压为-0.3 V、漏极电压为+3 V、频率为60~90 GHz时,功率放大器MMIC的小信号增益大于13 dB,在71~76 GHz和81~86 GHz典型应用频段,功率放大器的小信号增益均大于15 dB。载体测试结果表明,栅极电压为-0.3 V、漏极电压为+3 V、频率为60~90 GHz时,该功率放大器MMIC饱和输出功率大于17.5 dBm,在71~76 GHz和81~86 GHz典型应用频段,其饱和输出功率可达到20 dBm。该功率放大器MMIC尺寸为5.25 mm×2.10 mm。  相似文献   

13.
基于0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,成功研制了一款30~34 GHz频带内具有带外抑制特性的低功耗低噪声放大器(LNA)微波单片集成电路(MMIC)。该MMIC集成了滤波器和LNA,其中滤波器采用陷波器结构,可实现较低的插入损耗和较好的带外抑制特性;LNA采用单电源和电流复用结构,实现较高的增益和较低的功耗。测试结果表明,该MMIC芯片在30~34 GHz频带内,增益大于28 dB,噪声系数小于2.8 dB,功耗小于60 mW,在17~19 GHz频带内带外抑制比小于-35 dBc。芯片尺寸为2.40 mm×1.00 mm。该LNA MMIC可应用于毫米波T/R系统中。  相似文献   

14.
主要介绍了C波段高增益低噪声单片放大器的设计方法和电路研制结果。电路设计基于Agilent ADS微波设计环境,采用GaAs PHEMT工艺技术实现。为了消除C波段低噪声放大器设计中在低频端产生的振荡,提出了在第三级PHEMT管的栅极和地之间放置RLC并联再串联电阻吸收网络的方法,降低了带外低频端的高增益,从而消除了多级级联低噪声放大器电路中由于低频端增益过高产生的振荡。通过电路设计与版图电磁验证相结合的方法,使本产品一次设计成功。本单片采用三级放大,工作频率为5~6GHz,噪声系数小于1.15dB,增益大于40dB,输入输出驻波比小于1.4∶1,增益平坦度ΔGp≤±0.2dB,1dB压缩点P-1≥10dBm,直流电流小于90mA。  相似文献   

15.
黄华  张海英  杨浩  尹军舰  叶甜春   《电子器件》2007,30(3):808-810,814
报道了一种可直接应用于无线接收系统前端的具有较低噪声系数和较高相关增益的MMIC低噪声放大器,该低噪声放大器采用0.50 μm GaAs PHEMT工艺技术制作.电路设计采用两级级联结构,为减小电路面积采用集总参数元件匹配电路,并用ADS软件仿真无源元件寄生效应.电路测试结果表明:在2.8~3.5 GHz 频段内噪声系数低于1.4 dB,同时相关增益大于25 dB,增益平坦度小于0.5 dB,输入输出反射损耗小于-10 dB.  相似文献   

16.
利用负反馈放大器设计原理,采用GaAs PHEMT工艺技术,设计制作了一种微波宽带GaAs PHEMT低噪声放大器芯片,并给出了详细测试曲线.该放大器由两级组成,采用负反馈结构,工作频率0.8~8.5 GHz,整个带内功率增益19 dB,噪声系数1.55 dB,增益平坦度小于±0.7 dB,输入驻波比1.6,输出驻波比1.8,1 dB压缩点输出功率大于10 dBm,芯片内部集成偏置电路,单电源 5 V供电,芯片具有良好的温度特性.该芯片面积为2.5 mm × 1.2 mm.  相似文献   

17.
By using 0.15μm GaAs pHEMT (pseudomorphic high electron mobility transistor)technology,a design of millimeter wave power amplifier microwave monolithic integrated circuit(MMIC)is presented.With careful optimization on circuit structure,this two-stage power amplifier achieves a simulated gain of 15.5dB with fluctuation of 1 dB from 33 GHz to 37GHz.A simulated output power of more than 30dBm in saturation can be drawn from 3 W DC supply with maximum power added efficiency(PAE)of 26%.Rigorous electromagnetic simulation is performed to make sure the simulation results are credible.The whole chip area is 3.99mm2 including all bond pads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号