首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
基于0.15μm GaN HEMT工艺,设计并实现了一款超宽带毫米波GaN低噪声放大器(LNA)微波单片集成电路(MMIC)。该放大器采用4级级联结构,其输入和输出端均采用5阶匹配网络,提高了放大器的匹配带宽;由微带线、短截线和电容组成的无电阻输入匹配网络减小了输入热噪声,优化了电路的噪声系数;在级间匹配网络中引入电阻元件,通过降低Q值扩展电路工作带宽。采用SiC衬底0.15μm AlGaN/GaN HEMT工艺进行流片,在片测试结果表明,在频率14~34 GHz时,该LNA的增益为(18±1)dB、噪声系数小于4.5 dB,在频率为39 GHz时1 dB压缩点输出功率为19 dBm,最大输入承受功率为30 dBm,相对工作带宽大于100%。研制的MMIC LNA面积为1.71 mm2,功耗为1.05 W。  相似文献   

2.
陈述了一个基于单端共栅与共源共栅级联结构的超宽带低噪声放大器(LNA).该LNA用标准90-nm RFCMOS工艺实现并具有如下特征:在28.5~39 GHz频段内测得的平坦增益大于10 dB;-3 dB带宽从27~42 GHz达到了15 GHz,这几乎覆盖了整个Ka带;最小噪声系数(NF)为4.2dB,平均NF在27 ~ 42 GHz频段内为5.1 dB;S11在整个测试频段内小于-11 dB.40 GHz处输入三阶交调点(IIP3)的测试值为+2 dBm.整个电路的直流功耗为5.3 mW.包括焊盘在内的芯片面积为0.58 mm×0.48 mm.  相似文献   

3.
基于130 nm CMOS工艺设计了一款宽带低噪声放大器(LNA),适用于Ka波段的5G应用。通过降低输入阻抗与最佳源阻抗的偏差以抑制噪声,该LNA实现了宽带的最佳噪声系数匹配。一方面,该LNA采用由LC串联组合和LC并联组合构成的宽带前端网络,在取得低噪声系数的同时,实现了宽带输入匹配;另一方面,通过体隔离技术和级间电感匹配技术提高了电路增益。同时,通过并联峰值负载技术,提高了LNA的带内增益平坦度。测试结果表明,该LNA的峰值增益为11.2 dB,-3 dB带宽为7.5 GHz(29.1~36.6 GHz)。噪声系数为5.9~6.6 dB,与仿真的最小噪声系数非常接近。输入反射系数(<-10 dB)带宽为6.7 GHz(28.3~35 GHz)。该LNA在1.2 V电源电压下功耗为9 mW,芯片面积为0.54 mm2。  相似文献   

4.
为满足接收机的小型化需求,基于GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计了一款用于8~12 GHz的平衡式限幅低噪声放大器(LNA)单片微波集成电路(MMIC)。将Lange电桥、限幅器、LNA集成在同一衬底上,Lange电桥采用异形设计,芯片比传统尺寸降低30%以上;限幅器级间采用电感匹配结构,提升MMIC的工作带宽;LNA采用并联负反馈、源极电感负反馈以及电流复用拓扑结构,实现超低功耗和良好的稳定性。芯片采用整体最优化设计,在片测试结果表明,在工作频带内,限幅LNA MMIC芯片的增益为(25±0.2)dB(去除1 dB斜率),噪声系数小于1.6 dB,总功耗小于100 mW,耐功率大于46 dBm,该芯片尺寸为2.8 mm×2.4 mm,充分体现了集成工艺的性能和尺寸优势。  相似文献   

5.
曾志  周鑫 《半导体技术》2021,46(5):354-357
基于0.15 μm GaAs pin二极管和GaAs PHEMT工艺,设计并实现了一款5~13 GHz限幅低噪声放大器(LNA)单片微波集成电路(MMIC).该MMIC中限幅器采用三级反向并联二极管结构,优化了插入损耗和耐功率性能;LNA采用两级级联设计,利用负反馈和源电感匹配,在宽带下实现平坦的增益和较小的噪声;限幅器和LNA进行一体化设计,实现了宽带耐功率和低噪声目标.测试结果表明,在5~13GHz内,该MMIC的小信号增益大于20 dB,噪声系数小于1.8 dB,耐功率大于46 dBm(2 ms脉宽,30%占空比),总功耗小于190 mW,芯片尺寸为3.3 mm×1.2 mm.限幅LNA MMIC芯片的尺寸较小,降低了组件成本,同时降低了组件装配难度,提高通道之间的一致性.  相似文献   

6.
闵丹  马晓华  刘果果  王语晨 《半导体技术》2019,44(8):590-594,622
为满足宽带系统中低噪声放大器(LNA)宽带的要求,采用0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了两款1 MHz^40 GHz的超宽带LNA,分别采用均匀分布式放大器结构及渐变分布式放大器结构,电路面积分别为1.8 mm×0.85 mm和1.8 mm×0.8 mm。电磁场仿真结果表明,1 MHz^40 GHz频率范围内,均匀分布式LNA增益为15.3 dB,增益平坦度为2 dB,噪声系数小于5.1 dB;渐变分布式LNA增益为14.16 dB,增益平坦度为1.74 dB,噪声系数小于3.9 dB。渐变分布式LNA较均匀分布式LNA,显著地改善了增益平坦度、噪声性能和群延时特性。  相似文献   

7.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

8.
采用单片微波集成电路(MMIC)芯片技术和多芯片组件(MCM)微组装工艺,设计了一款小尺寸双通道发射接收(T/R)组件.组件由环形器、限幅器芯片、低噪声放大器(LNA)芯片、幅相控制多功能芯片、驱动放大器芯片和功率放大器芯片(PA)等部分构成.基于GaAs的LNA MMIC芯片具有更低噪声系数,基于GaN的PA MMIC芯片具有更高的输出功率及功率附加效率.组件接收通道采用基于GaAs的LNA芯片,发射通道采用基于GaN的PA芯片,设计了针对发射通道驱动放大器与功率放大器的协同脉冲调制电路.研制的T/R组件在8~12 GHz的频带内:接收通道在工作电压+5 V连续波的条件下,小信号增益大于20 dB,噪声小于3 dB;发射通道在周期1 ms,脉宽10%的调制脉冲条件下,脉冲发射功率大于46 dBm.T/R组件外形尺寸为70 mm×46 mm×15 mm.  相似文献   

9.
采用55 nm CMOS工艺,面向毫米波雷达应用,设计了一款74~88 GHz高性能CMOS低噪声放大器(LNA)。该LNA应用共源共栅结构,为了改善噪声系数、提高稳定性增益,采用级间寄生电容抵消的电感反馈共栅短接技术和基于反相双圈耦合的等效跨导增强技术。和传统共栅短接技术相比,级间寄生电容抵消的电感反馈共栅短接技术改善噪声系数1.58 dB,提高稳定性增益7.67 dB。芯片测试结果表明,LNA峰值增益为17.1 dB,最小噪声系数为6.3 dB,3 dB带宽为14 GHz(74.8~88.8 GHz),在78 GHz中心频率处输入1 dB压缩点(IP1dB)为-10.2 dBm,功耗为102 mW。  相似文献   

10.
从低噪声放大器(LNA)的设计原理出发,提出并设计了一种工作于1GHz的实用LNA.电路采用共源-共栅的单端结构,用HSPICE软件对电路进行分析和优化.模拟过程中选用的器件采用TSMC 0.5μm CMOS工艺实现.模拟结果表明所设计的LNA功耗小于15mW,增益大于10dB,噪声系数为1.87dB,IIP3大于10dBm,输入反射小于-50dB.可用于1GHz频段无线接收机的前端.  相似文献   

11.
基于90 nm栅长的InP高电子迁移率晶体管(HEMT)工艺,研制了一款工作于130 ~140 GHz的MMIC低噪声放大器(LNA).该款放大器采用三级级联的双电源拓扑结构,第一级电路在确保较低的输入回波损耗的同时优化了放大器的噪声,后两级则采用最大增益的匹配方式,保证了放大器具有良好的增益平坦度和较小的输出回波损耗.在片测试结果表明,在栅、漏极偏置电压分别为-0.25 V和3V的工作条件下,该放大器在130~ 140 GHz工作频带内噪声系数小于6.5 dB,增益为18 dB±1.5 dB,输入电压驻波比小于2:1,输出电压驻波比小于3:1.芯片面积为1.70 mm×1.10 mm.该低噪声放大器有望应用于D波段的收发系统中.  相似文献   

12.
通过在两级级联放大器的后一级中采用负反馈网络来拓展放大器的工作频带,并在放大器的偏置网络中添加吸收回路来提高放大器的稳定性和改善其输入输出驻波比.利用ATF-54143设计了一款工作于1~4GHz的性能优良低噪声放大器(LNA).仿真结果显示,其增益G=21.3±0.35 dB,噪声系数NF≤1.2 dB,输入输出反射...  相似文献   

13.
A new,low complexity,ultra-wideband 3.1-10.6 GHz low noise amplifier(LNA),designed in a chartered 0.18μm RFCMOS technology,is presented.The ultra-wideband LNA consists of only two simple amplifiers with an inter-stage inductor connected.The first stage utilizing a resistive current reuse and dual inductive degeneration technique is used to attain a wideband input matching and low noise figure.A common source amplifier with an inductive peaking technique as the second stage achieves high flat gain and wide -3 dB bandwidth of the overall amplifier simultaneously.The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB,and a high reverse isolation of—45 dB,and good input/output return losses are better than -10 dB in the frequency range of 3.1-10.6 GHz.An excellent noise figure(NF) of 2.8-4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V.An input-referred third-order intercept point(IIP3) is -7.1 dBm at 6 GHz.The chip area,including testing pads,is only 0.8×0.9 mm2.  相似文献   

14.
3.1~10.6GHz超宽带低噪声放大器的设计   总被引:1,自引:0,他引:1  
韩冰  刘瑶 《电子质量》2012,(1):34-37
基于SIMC0.18μmRFCMOS工艺技术,设计了可用于3.1—10.6GHzMB—OFDM超宽带接收机射频前端的CMOS低噪声放大器(LNA)。该LNA采用三级结构:第一级是共栅放大器,主要用来进行输入端的匹配;第二级是共源共栅放大器,用来在低频段提供较高的增益;第三级依然为共源共栅结构,用来在高频段提供较高的增益,从而补偿整个频带的增益使得增益平坦度更好。仿真结果表明:在电源电压为1.8v的条件下,所设计的LNA在3.1~10.6GHz的频带范围内增益(521)为20dB左右,具有很好的增益平坦性f±0.4dB),回波损耗S11、S22均小于-10dB,噪声系数为4.5dB左右,IIP3为-5dBm,PIdB为0dBm。  相似文献   

15.
提出了一种基于双反馈电流复用结构的新型CMOS超宽带(UWB)低噪声放大器(LNA),放大器工作在2~12 GHz的超宽带频段,详细分析了输入输出匹配、增益和噪声系数的性能。设计采用TSMC 0.18μm RF CMOS工艺,在1.4 V工作电压下,放大器的直流功耗约为13mW(包括缓冲级)。仿真结果表明,在2~12 GHz频带范围内,功率增益为15.6±1.4 dB,输入、输出回波损耗分别低于-10.4和-11.5 dB,噪声系数(NF)低于3 dB(最小值为1.96 dB),三阶交调点IIP3为-12 dBm,芯片版图面积约为712μm×614μm。  相似文献   

16.
In this paper, a narrowband cascode Low Noise Amplifier (LNA) with shunt feedback is proposed. A typical inductively degenerated cascode LNA can be treated as a Common Source-Common Gate (CS-CG) two stage LNA. The series interstage inductance is connected between CS-CG stages to increase the power gain. An additional inductance which is connected at the gate of CG stage is used to cancel out the parasitic capacitance of CG stage therefore reduces the noise figure of CG stage. The shunt feedback is used to improve the stability and input impedance matching. This configuration provides better input matching, lower noise figure, low power consumption and good reverse isolation. The proposed LNA exhibits the gain of 13 dB, input return loss of ?11 dB, noise figure of 2.2 dB and good reverse isolation of ?42.8 dB at a frequency of 2.4GHz using TSMC 0.13 μm CMOS technology. It produces gain and noise figure better than conventional cascode LNA. The proposed LNA is biased in moderate inversion region for achieving sufficient gain with low power consumption of 1.5mW at a supply voltage of 1.5V.  相似文献   

17.
张振  范如东  罗俊 《微电子学》2012,42(4):463-465,476
介绍了一种小型化平衡式限幅低噪声放大器。该放大器采用Lange桥平衡结构,在实现低噪声的同时,保证了小电压驻波比;在3.0~3.5GHz频带内,噪声系数小于1.3dB,输入输出驻波系数小于1.3,增益大于27dB,平坦度±0.6dB以内,输出1dB压缩点大于12dBm。该放大器能够承受最大5W的连续波功率输入,且大功率输入时的驻波系数小于1.3。  相似文献   

18.
In this paper, a low power differential inductor-less Common Gate Low Noise Amplifier (CG-LNA) is presented for Wireless Sensor Network (WSN) applications. New Shunt feedback is employed with noise cancellation and Dual Capacitive Cross Coupling (DCCC) techniques to improve the performance of common gate structures in terms of gain, Noise Figure (NF) and power consumption. The shunt feedback path boosts the input conductance of the LNA in current reuse scheme. Both shunt feedback and current reuse bring power dissipation down considerably. In addition, the positive feedback is utilized to cancel the thermal noise of the input transistor. The proposed LNA is designed and simulated in 0.18 µm TSMC CMOS technology. Post layout Simulation results indicate a voltage gain of 16.5 dB with −3 dB bandwidth of 100 MHz–3 GHz. Also third order Input Intercept Point (IIP3) is equal to + 1 dBm. The minimum NF is 2.8 dB and the value of NF at 2.4 GHz is 2.9 dB. S11 is better than −13 dB in whole frequency range. The core LNA consumes 985 µW from a 1.8 V DC voltage supply.  相似文献   

19.
This paper proposes a fully-differential folded cascode low noise amplifier (LNA) for 5.5 GHz receiver in 180 nm CMOS technology. By improving folded cascode with an additional inductance connected at the gate of CG stage to cancel parasitic capacitance and then employing capacitor cross-coupled technique as a negative feedback in the proposed LNA, the performance of the LNA can be improved significantly in terms of gain (S21) and noise figure (NF) compared with the conventional fold cascode LNA. Furthermore, the DC power consumption of the LNA is further reduced with forward body bias topology. The measurements show the proposed LNA achieves 16.5 dB power gain, a NF of 1.53 dB, good input/output matching with the S11 and S22 are less than \(-\) 15 dB. And the operating voltage is only 0.5 V with ultra-low power consumption of 0.89 mW.  相似文献   

20.
采用GaAs工艺设计了一个12~18 GHz毫米波单片集成电路(MMIC)低噪声放大器(LNA)。采用三级单电源供电放大结构,运用最小噪声匹配设计、共轭匹配技术和负反馈结构,同时满足了噪声系数、增益平坦度和输出功率等要求。仿真表明:在12~18 GHz的工作频带内,噪声系数为1.15~1.41 dB,增益为27.9~29.1 dB,输出1 dB压缩点达到15 dBm,输入、输出电压驻波比(VSWR)系数小于1.72。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号